
Term Finance

Term Finance Contracts
Security Assessment Report

Version: 3.0

April, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Bids only transfer collateral for the first token type . 8Unlocking offers does not return any funds . 9Cancelling an auction refunds the wrong amount for unrevealed offers 10Liquidations fail with "Division by Zero" errors . 11Rollover bids are set to maximum price, causing reverts . 13Borrowers cannot withdraw excess collateral after liquidation or default 14No checks for non-zero output address when using ecrecover() 15
authenticate() tracked nonces not unique per address . 16If a transaction reverts, its authentication token can be reused by any user to authenticate anytransaction . 17Insufficient Permissions Granted to New Auctions . 19Authentication tokens could be reused from another chain or project 20
getCollateralBalances() returns tokens at the zero address if a user does not have a balance ina collateral token . 21Bid price not accounted for in _isInInitialCollateralShortFall() 22Accounting discrepancy in rollover bids . 23Predictable price hashes . 24Auction settings can change after an auction starts . 25No protection against initialisation of implementation contracts 26Use of transfer() and transferFrom() . 27Minting of tokens does not decrement mintExposureCap . 28Maximum bid and offer prices are scaled up . 29Excessive gas consumption . 30Protect against risk of front-running initialize() functions during protocol deployment 32Issues relating to collateral tokens sudden price swings . 34Consider unusual ERC20 token semantics . 36Query about irretrievable tokens . 37No way to remove from contract registry . 38Miscellaneous general comments . 39

A Test Suite 41

B Vulnerability Severity Classification 42

1

Term Finance Contracts Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Term Finance smartcontracts. The review focused solely on the security aspects of the Solidity implementation of the contracts,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contracts. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Term Finance smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Term Finance smart contracts.

Overview

Term Finance is a noncustodial fixed-rate liquidity protocol modeled on tri-party repo arrangements common intraditional finance.
Liquidity suppliers and takers arematched through a uniqueweekly auction processwhere liquidity takers submitbids and suppliers submit offers to the protocol, which then determines an interest rate that clears the market.
Bidders who bid more than the clearing rate receive liquidity and lenders asking less than the clearing rate,supply.

Page | 2

Term Finance Contracts Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the term-finance repository and were assessed at commite57734f. Retesting activities targeted commit e883f0e.
The scope of this assessment included the following contracts:

• contracts/Authenticator.sol

• contracts/TermAuction.sol

• contracts/TermAuctionBidLocker.sol

• contracts/TermAuctionOfferLocker.sol

• contracts/TermController.sol

• contracts/TermEventEmitter.sol

• contracts/TermInitializer.sol

• contracts/TermPriceConsumerV3.sol

• contracts/TermRepoCollateralManager.sol

• contracts/TermRepoLocker.sol

• contracts/TermRepoRolloverManager.sol

• contracts/TermRepoServicer.sol

• contracts/TermRepoToken.sol

Note: the OpenZeppelin libraries and external dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Ethereum VirtualMachine (for example, verifying correct storage/memory layout). Additionally, the manual review process fo-cused on all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the followingvectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thor-ough, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither

Output for these automated tools is available upon request.

Page | 3

https://github.com/term-finance/term-finance
https://github.com/term-finance/term-finance/tree/e57734ff908cf1d8e7edf53f3c52e2872283fb3b
https://github.com/term-finance/term-finance/pull/738/commits/e883f0e3673355fcfa365d8c3802e8977813b22e
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither

Term Finance Contracts Findings Summary

Findings Summary

The testing team identified a total of 27 issues during this assessment. Categorized by their severity:
• Critical: 10 issues.
• High: 5 issues.
• Low: 5 issues.
• Informational: 7 issues.

Page | 4

Term Finance Contracts Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Term Finance’s smartcontracts. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
TRM-01 Bids only transfer collateral for the first token type Critical Resolved

TRM-02 Unlocking offers does not return any funds Critical Resolved

TRM-03 Cancelling an auction refunds the wrong amount for unrevealed offers Critical Resolved

TRM-04 Liquidations fail with "Division by Zero" errors Critical Resolved

TRM-05 Rollover bids are set to maximum price, causing reverts Critical Resolved

TRM-06 Borrowers cannotwithdraw excess collateral after liquidation or default Critical Resolved

TRM-07 No checks for non-zero output address when using ecrecover() Critical Resolved

TRM-08 authenticate() tracked nonces not unique per address Critical Resolved

TRM-09 If a transaction reverts, its authentication token can be reused by anyuser to authenticate any transaction Critical Resolved

TRM-10 Insufficient Permissions Granted to New Auctions Critical Resolved

TRM-11 Authentication tokens could be reused from another chain or project High Resolved

TRM-12 getCollateralBalances() returns tokens at the zero address if a userdoes not have a balance in a collateral token High Resolved

TRM-13 Bid price not accounted for in _isInInitialCollateralShortFall() High Resolved

TRM-14 Accounting discrepancy in rollover bids High Resolved

TRM-15 Predictable price hashes High Resolved

TRM-16 Auction settings can change after an auction starts Low Resolved

TRM-17 No protection against initialisation of implementation contracts Low Resolved

TRM-18 Use of transfer() and transferFrom() Low Resolved

TRM-19 Minting of tokens does not decrement mintExposureCap Low Closed

TRM-20 Maximum bid and offer prices are scaled up Low Resolved

TRM-21 Excessive gas consumption Informational Closed

TRM-22 Protect against risk of front-running initialize() functions during pro-tocol deployment Informational Resolved

TRM-23 Issues relating to collateral tokens sudden price swings Informational Closed

TRM-24 Consider unusual ERC20 token semantics Informational Closed

TRM-25 Query about irretrievable tokens Informational Closed

6

TRM-26 No way to remove from contract registry Informational Resolved

TRM-27 Miscellaneous general comments Informational Resolved

7

Term Finance Contracts Detailed Findings

TRM-01 Bids only transfer collateral for the first token type
Asset TermAuctionBidLocker.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

When a bid is submitted, its validity is assessed against all the different collateral tokens in the bid added together.However, only the first collateral token is actually transferred.
A user could submit a large bid with collateral in two tokens: A and B. The amount of token A could be tiny and theamount of token B could be very large. The system would accept the submitted bid and potentially allow this user toborrow a large amount of the purchase token whilst only making the small token A collateral payment.
The functionwhich assesseswhether a bid has sufficient collateral is TermAuctionBidLocker._isInInitialCollateralShortFall() .
On line [434], this function loops through the array collateralTokens_ , calculates their cumulative value, and on line[450] compares this to the bid’s repurchase price.
The codewhich stores an accepted bid only processes the first collateral token, however. This code is on line [231] to line[272] and it consistently assesses only bidSubmission.collateralTokens[0] and bidSubmission.collateralAmounts[0]

including, crucially, in the calls to termRepoCollateralManager.auctionLockCollateral() where the collateral tokensare transferred.

Recommendations

If multiple collateral tokens are allowed in a bid, modify the code of _lock() to process multiple tokens at each step.
If only one collateral token is to be allowed per bid, review and modify the code of TermAuctionBidLocker.sol.
Consider that the system may be significantly simplified by limiting bids to only one kind of collateral token. Multiplecollateral bids may be rare, and yet they add significant system complexity which results in higher gas costs and thepotential for further security issues. A user could still submit multiple separate bids in the same auction using differentcollateral tokens.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - multiple collaterals are now correctly supported.

Page | 8

Term Finance Contracts Detailed Findings

TRM-02 Unlocking offers does not return any funds
Asset TermAuctionOfferLocker.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

When a user unlocks (ie. cancels) an offer, the offer is deleted from the protocol, but the purchase tokens are notreturned to the user.
On line [235] of TermAuctionOfferLocker.sol, a call to termRepoServicer.unlockOfferAmount() should return the pur-
chase tokens for an offer to the offerer. However, it is calledwith the argument offerToUnlock.amount . offerToUnlockis declared on line [228] as a variable of type storage . Storage variables are simply pointers, or references to existing
storage locations. Therefore, when the variable which offerToUnlock points to is deleted on line [230], the contents of
offerToUnlock are deleted too. This means that offerToUnlock.amount will be zero, and so no tokens will be returned.

Recommendations

Use a memory variable to copy values that are about to be deleted from storage. The variable type on line [228] couldbe changed to memory , but gas could be saved by instead copying only the information required:
uint256 amountToUnlock = offers[id].amount;

Note that uint256 variables inside functions are automatically of type memory .

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - amountToUnlock is now set to offers[id].amount .

Page | 9

Term Finance Contracts Detailed Findings

TRM-03 Cancelling an auction refunds the wrong amount for unrevealed offers
Asset TermAuction.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

When the admin cancels an auction, an incorrect amount of purchase tokens is returned for unrevealed offers.
The array sortedOffers is used on line [1162], while it should be unrevealedOffers . As a result, the amount for therevealed offer of the corresponding unrevealed offer index is returned instead.

1157 // Return unrevealed offer funds.
for (i = 0; i < unrevealedOffers.length; i++) {

1159 termAuctionOfferLocker.unlockOfferPartial(
unrevealedOffers[i].id,

1161 unrevealedOffers[i].offeror,
sortedOffers[i].amount

1163);
}

If the value of the index i is greater than the maximum index in sortedOffers , the transaction would revert. Other-wise, the wrong amount is refunded.

Recommendations

Change line [1162] to unrevealedOffers[i].amount .

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - unrevealedOffers array is nowused in termAuctionOfferLocker.unlockOfferPartial()function.

Page | 10

Term Finance Contracts Detailed Findings

TRM-04 Liquidations fail with "Division by Zero" errors
Asset TermRepoCollateralManager.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Complete liquidations always fail with a "Division by Zero" error due to the calculations referring to the repaid balance.
At the end of batchLiquidation() , a function _withinNetExposureCapOnLiquidation() is called, which uses the fol-lowing in its calculations:
uint256 getBorrowerRepurchaseObligation = termRepoServicer.getBorrowerRepurchaseObligation(borrower);

// ...snip...

div_(
excessEquity,
termPriceOracle.usdValueOfTokens(

purchaseToken,
termRepoServicer.getBorrowerRepurchaseObligation(borrower)

)
);

For a complete liquidation, getBorrowerRepurchaseObligation() will always be 0 as, during liquidations, the call to
termRepoServicer.liquidatorCoverExposure() on line [339], will reduce the borrower’s repurchase obligation to zero.
The above snippet of code will then always fail with division by 0, reverting the liquidation transaction and disablingthe ability to fully liquidate the account.

Recommendations

Modify _withinNetExposureCapOnLiquidation() to recognise borrower’s repurchase obligation being 0.
This could be achieved by adding the following at the beginning of the _withinNetExposureCapOnLiquidation() func-tion:

880 uint256 getBorrowerRepurchaseObligation = termRepoServicer
.getBorrowerRepurchaseObligation(borrower);

882

if (getBorrowerRepurchaseObligation == 0) { return true; } // <= New code

If the borrower has no repurchase obligation, they must be within the levels defined by netExposureCapOnLiquidation ,
and so it is safe to return true and avoid both the division by zero and all the unnecessary calculations.

Page | 11

Term Finance Contracts Detailed Findings

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - complete liquidations now do not fail with "Divisonby Zero".

Page | 12

Term Finance Contracts Detailed Findings

TRM-05 Rollover bids are set to maximum price, causing reverts
Asset TermAuction.sol, TermAuctionBidLocker.sol, TermRepoRolloverManager.sol
Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

When processing an auction with at least one rollover bid, the transaction to complete the auction reverts.
In TermAuctionBidLocker._fillRevealedBidsForAuctionClearing() , all rollover bids have their price set to type(uint256).max

on line [481]. Rollover bids are submittedwith a bid price hash TermRepoRolloverElectionSubmission.rolloverBidPriceHash

to the function TermRepoRolloverManager.electRollover() . Also, all bids provided to _fillRevealedBidsForAuctionClearing()

are in an array called revealedBids of bids with revealed prices. It is unclear why the rollover prices are being over-written.
When processing auctions containing rollover bids and standard revealed bids, the code revertswith an integer overflowin TermAuction._calculateClearingPrice() when the rollover price was added to another price in this section of code:

443 uint256 finalClearingPrice = 0;
if (clearingOffset > state.currentOfferIndex) {

445 finalClearingPrice =
(sortedOffers[0].offerPriceRevealed +

447 sortedBids[
_minUint256(

449 sortedBids.length - 1,
state.currentBidIndex + clearingOffset

451)
].bidPriceRevealed) /

453 2;
} else {

455 // ...

Recommendations

Review the logic of setting rollover bids prices to type(uint256).max in _fillRevealedBidsForAuctionClearing() andconsider a method for processing rollover bids with their submitted prices.

Resolution

This finding has been addressed during initial testing in PR 681.

Page | 13

https://github.com/term-finance/term-finance/pull/681

Term Finance Contracts Detailed Findings

TRM-06 Borrowers cannot withdraw excess collateral after liquidation or default
Asset TermRepoCollateralManager.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Borrowers are unable to withdraw excess collateral after they are entirely liquidated or defaulted. The excess collateralwill be locked within the TermRepoLocker contract.
This issue stems from the check in externalUnlockCollateral() on line [282]:

281 address borrower = termAuth.user;
if (termRepoServicer.getBorrowerRepurchaseObligation(borrower) == 0) {

283 revert ZeroBorrowerRepurchaseObligation(); // SigP: This will revert when loan paid in full
}

285 _unlockCollateral(borrower, collateralToken, amount);
if (isBorrowerInShortfall(borrower)) {

287 revert CollateralBelowMaintenanceRatios(borrower, collateralToken);
}

termRepoServicer.getBorrowerRepurchaseObligation(borrower) will always return 0 if the borrower’s owed balancehas been fully repaid. In the case of a liquidation or a default, it is possible for this to happen without all of the collateraltokens being paid to the liquidator. The excess collateral tokens would then remain in the TermRepoLocker contract,marked as belonging to the borrower. If the borrower attempts to retrieve those tokens, however, the test on line [282]will evaluate to true and the revert on line [283] will be triggered.

Recommendations

Allow borrowers to withdraw leftover collateral after their repurchase obligation has been entirely repaid throughliquidation or default.

Resolution

This finding has been addressed in PR 757.

Page | 14

https://github.com/term-finance/term-finance/pull/757

Term Finance Contracts Detailed Findings

TRM-07 No checks for non-zero output address when using ecrecover()

Asset contracts/Authenticator.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

There are no checks to ensure ecrecover() does not return zero.
As such, any invalid signature would be treated as valid when paired with a zero address. The zero address (stored in
termAuth.user) and an invalid signature can then be used to authenticate transactions.
From Authenticator line [100]:

82 /// Verifies a signature
/// @param termAuth The `TermAuth` struct containing user address, nonce, and signature

84 /// @return bool A boolean testing whether or not a signature is valid
function authenticate(TermAuth memory termAuth) public returns (bool) {

86 if (usedNonces[termAuth.nonce]) {
revert NonceAlreadyUsed(termAuth.nonce);

88 }
usedNonces[termAuth.nonce] = true;

90

(uint8 v, bytes32 r, bytes32 s) = splitSignature(termAuth.signature);
92

string memory header = "\x19Ethereum Signed Message:\n32";
94 bytes32 check = keccak256(

abi.encodePacked(
96 header,

keccak256(abi.encodePacked(termAuth.nonce, termAuth.user))
98)

);
100 return ecrecover(check, v, r, s) == termAuth.user; // SigP: should be checking ecrecover is non-zero

}

Recommendations

Perform checks on the return value from ecrecover() and revert if the value is 0.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - the function now reverts with InvalidSignature

error if ecrecover() returns 0.

Page | 15

Term Finance Contracts Detailed Findings

TRM-08 authenticate() tracked nonces not unique per address
Asset Authenticator.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

usedNonces tracks all nonces used in authenticated transactions, however, they are not tracked on a per-address basis.
As a result, if a transaction from one wallet address used nonce X, any other transaction from a different wallet addresswith the same nonce X will revert. This will cause unexpected and arbitrary denial of service conditions for end users.

Recommendations

Track all nonces per unique address, not as a collective.
Modify usedNonces to be a mapping of an address to an integer (nonce) and use it accordingly.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - Authenticator now tracks used nonces on a peruser basis.

Page | 16

Term Finance Contracts Detailed Findings

TRM-09 If a transaction reverts, its authentication token can be reused by any user to authenticate anytransaction
Asset Authenticator.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Authentication tokens can be reused in future transactions when an original transaction reverted.
Each transaction in Term Finance requires a special authentication token created by the address which is being affected.This does not have to be the same address as the one submitting the transaction. Once submitted in a completedtransaction, these tokens are marked as used and so cannot be reused.
However, reverted transactions cannot modify the state of user accounts on the blockchain. This means that theauthentication token will not and cannot be marked as used in a reverted transaction. Another user can then take thistoken and use it at any time to authenticate any single transaction from that account.
The exploit scenarios for this vulnerability are as wide as anything authorised by Authenticator.sol and so could in-crease in future. Within the scope of the system being reviewed however, one exploit could be to submit a very large,high bid immediately before an auction closes. This would result in a user’s funds being transferred from their addressand locked in Term Finance until the repurchase date. In the worst case scenario, these funds could also be liquidatedif their value drops, which is a risk the user did not consent to.
TermAuth authentication tokens are validated in Authenticator.authenticate() . Each contains a nonce value, which
is recorded in usedNonces[termAuth.nonce] on line [89] so that it cannot be reused. This is tested on line [86]. However,
a reverted transaction would revert all storage changes, including this, and so usedNonces[termAuth.nonce] would
remain False for the token.

Recommendations

Include a hash of the transaction parameters, the destination contract address, the chain ID, and an expiry time in the
TermAuth authentication token so that it can only be used to authorise the intended transaction.
Note that, in the case of a reverted transaction, the authorisation token would still be usable before that expiry timeby any other user, but only to authorise the original intended transaction.

Resolution

Based on a retest of commit e883f0e , the issue is now resolved - calldata, nonce and expiration timestamp are nowsigned.
Note, Authenticator.authenticate() function takes both termAuth and txMsgData as parameters.
All checks for expiration timestamp and nonce are performed on values extracted from termAuth parameter passed
to the function, not the txMsgData that is being signed. As a result, when calling Authenticator.authenticate()

Page | 17

Term Finance Contracts Detailed Findings

directly, nonce and expiration timestamp could be modified in termAuth parameter to bypass necessary checks andsuccessfully replay previous transactions.
However, this did not appear to be exploitable in the reviewed code base due to the way
Authenticator.authenticate() is called by the protocol. Every function call requiring authentication contains
termAuth and invokes Authenticator.authenticate() with msg.data parameter. As such discrepancy between
termAuth and txMsgData contents cannot occur.
Significant care should be taken to ensure this approach is consistent throughout the protocol and any future develop-ments.
The development team has been made aware of this and acknowledged it.

Page | 18

Term Finance Contracts Detailed Findings

TRM-10 Insufficient Permissions Granted to New Auctions
Asset TermRepoCollateralManager.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Newly reopened auctions linked to TermRepoCollateralManager do not have necessary AUCTION_LOCKER permissionsset.
Lack of sufficient permissions set on new auctions will prevent new auctions from ever completing.

Recommendations

Grant AUCTION_LOCKER permissions to a new auction in TermRepoCollateralManager.reopenToNewAuction() , such as:
function reopenToNewAuction(TermAuctionGroup calldata termAuctionGroup)

external
onlyRole(DEFAULT_ADMIN_ROLE)

{
_grantRole(

AUCTION_LOCKER,
address(termAuctionGroup.auction)

);

//...

Resolution

This finding has been addressed in PR 759.

Page | 19

https://github.com/term-finance/term-finance/pull/759

Term Finance Contracts Detailed Findings

TRM-11 Authentication tokens could be reused from another chain or project
Asset Authenticator.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Authentication tokens are not unique per chain and could be reused on another chain.
Each transaction in Term Finance requires a special authentication token created by the address which is being affected.This does not have to be the same address as the one submitting the transaction. Once submitted in a completedtransaction, these tokens are marked as used and so cannot be reused.
However, if Term Finance deploys onmultiple chains, authentication tokens that aremarked as used on one chainwouldnot be marked as used on another. They could then be used by any user to authorise any Term Finance transaction onany chains where that token has not already been used.
Even if Term Finance never deploys on another chain, it would only require another project to fork the code and thatproject’s tokens would be usable on Term Finance and vice versa. This is because the tokens only encode a user’saddress and a single counter, called the nonce .
Reused tokens could authorise any transaction that requires a TermAuth authentication token.

Recommendations

Include a hash of the transaction parameters, the destination contract address (or the address of Authenticator), thechain ID, and an expiry time in the TermAuth authentication token so that it can only be used to authorise the intendedtransaction on the intended protocol on the intended blockchain.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - block.chainid and transaction’s contract addressis now included as a part of the hash being signed.

Page | 20

Term Finance Contracts Detailed Findings

TRM-12 getCollateralBalances() returns tokens at the zero address if a user does not have a balancein a collateral token
Asset TermRepoCollateralManager.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The function TermRepoCollateralManager.getCollateralBalances() returns the zero address as the token address ifa user does not have a balance in a given token.
This causes rollover bids to fail as TermAuctionBidLocker._isInInitialCollateralShortFall() loops through all of the
tokens returned and calls termPriceOracle.usdValueOfTokens() for each one. This call reverts when called with thezero address as the token’s address.
This issue occurs because the return values of TermRepoCollateralManager.getCollateralBalances() are set to arrays
of length collateralTokens.length on line [543] but the token addresses are assigned to these arrays conditionally onwhether the user has collateral on line [555]. Therefore, tokens with no collateral remain as the contents of memory .

Recommendations

Either dynamically set the length of the returned arrays after determining how many token balances will be returned,or else return all token addresses, with zero balances where appropriate, and handle this returned data accordingly.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - TermAuctionBidLocker._isInInitialCollateralShortFall()now has a check to omit zero balances of collateral tokens.

Page | 21

Term Finance Contracts Detailed Findings

TRM-13 Bid price not accounted for in _isInInitialCollateralShortFall()

Asset TermAuctionBidLocker.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

The calculated repurchase value on line [432] of TermAuctionBidLocker.sol does not take into account the submittedbid price. The check is only performed on the bid amount:
Exp memory repurchasePriceUSDValue = termPriceOracle.usdValueOfTokens(

purchaseToken,
bidAmount

);

As a result, a user could submit a large bid without providing sufficient collateral to service the interest on their loan,and thereby win an auction.
Note, this would make them under immediate threat of liquidation after conclusion of the auction, but nonethelessthey would be able to participate in and complete the auction successfully.

Recommendations

When calculating a position’smargin in _isInInitialCollateralShortFall() , take into account the submitted bid priceto ensure the user puts up sufficient collateral to cover the eventual repurchase price.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - _isInInitialCollateralShortFall() now takesinto account repurchase price.

Page | 22

Term Finance Contracts Detailed Findings

TRM-14 Accounting discrepancy in rollover bids
Asset TermRepoCollateralManager.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Discrepancy between balances of lockedCollateralLedger and encumberedCollateralBalances could lead to ac-counting errors and unexpected reverts.
When a rollover bid is transferred to a new TermRepoCollateralManager , TermAuction calls
TermRepoCollateralManager.acceptRolloverCollateral() after transferring the collateral tokens. However,
acceptRolloverCollateral() only modifies the value of lockedCollateralLedger[borrower][collateralToken] .
It does not increase encumberedCollateralBalances[collateralToken] by the same amount, as it occurs in
_lockCollateral .
This could lead to an accounting error that could lead to reverts when _unlockCollateral() is called for the borrower
and encumberedCollateralBalances[collateralToken] could be reduced below zero.

Recommendations

Review the logic of TermRepoCollateralManager.acceptRolloverCollateral().
Modify balances of encumberedCollateralBalances[collateralToken] by the same amount as
lockedCollateralLedger[borrower][collateralToken]

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - acceptRolloverCollateral now also increments
balances in encumberedCollateralBalances ledger.

Page | 23

Term Finance Contracts Detailed Findings

TRM-15 Predictable price hashes
Asset TermAuctionBidLocker.sol, TermAuctionOfferLocker.sol, TermRepoRolloverManager.sol
Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Generated price hashes are easy to guess.
Bids and offers send a hash of their price as a mechanism for locking in a price whilst not revealing the price publicly.The method of generating these hashes is predictable, the same price will always result in the same hash. Because ofthis, it is easy to generate lists of all price hashes and test them against submitted hashes, thereby discovering hiddenbid prices.
Similarly, rollover bids are likely to use the same price, and it will be clear if this is the case as the price hash would beunchanged.
A price hash is generated by the simple code:
hash = keccak256(abi.encode(price))

This code can be reproduced and run quickly to test a large range of potential prices. Once a realistic range has beencompiled, a simple script would be able to look up any given price hash in a database of price hashes.

Recommendations

Consider hashing more information within the price hash. The goal is to add additional levels of entropy, such that thehash produced would not rely on easily predictable factors. It should also change with each bid, so that a single lookuptable of prices to their hashes could not be compiled.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - price hashes now also contain a nonce (salt).

Page | 24

Term Finance Contracts Detailed Findings

TRM-16 Auction settings can change after an auction starts
Asset TermAuction.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The function TermAuction.pairTermContracts() is only restricted by role, and can therefore be called after an auctionstarts.
It could be used to change auction settings after it has already started, potentially causing collateral and loan tokens tobe moved to the wrong locker.

Recommendations

Add a modifier to TermAuction.pairTermContracts() that would prevent its use after the auction has started.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - Term contracts can now be initialised only once.

Page | 25

Term Finance Contracts Detailed Findings

TRM-17 No protection against initialisation of implementation contracts
Asset contracts/*

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

Majority of reviewed contracts are using a proxy model to allow upgradeability. One known issue of proxy models isthat the implementation contracts themselves can sometimes be directly initialised by other users. In many cases, thishas little to no impact. However, if a malicious user can find a way to selfdestruct the implementation contract, theproxy contract becomes unusable.
Whilst no method of calling selfdestruct was found at the time of the review, it is recommended to lock implemen-tation contracts from being initialised by third parties, especially when the contracts’ initialize functions have noaccess control, as is the case here.

Recommendations

For any contract using Openzeppelin’s Initializable contract, it can be protected from third party initialisation byadding the following code:
constructor() {

_disableInitializers();
}

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - _disableInitializers(); was added to theconstructor of implementation contracts.

Page | 26

Term Finance Contracts Detailed Findings

TRM-18 Use of transfer() and transferFrom()

Asset TermRepoLocker.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

TermRepoLocker uses transfer() and fransferFrom() functions.
Some ERC20 tokens don’t return a value in their transfer and transferFrom() functions. If there are no checksperformed on the returned value (or if there is a value returned), the function may not revert on failed transfers andthis may lead to further errors.
SafeERC20 functions safeTransfer() and safeTransferFrom() automatically check and assert the boolean returnvalue of a transfer function.

Recommendations

Use SafeERC20 functions such as safeTransfer() and safeTransferFrom() to ensure that the return value of thetransfer call is checked and handled properly, if there is a return value.

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - safeTransfer() and safeTransferFrom() arenow used instead.

Page | 27

https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20

Term Finance Contracts Detailed Findings

TRM-19 Minting of tokens does not decrement mintExposureCap
Asset TermRepoToken.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The _mint() function of TermRepoToken does not decrement the mintExposureCap counter after minting new tokens.
If not updated, it is possible to mint more tokens than the set cap.
Note, there is a function decrementMintExposureCap() that decrements mintExposureCap when called manually. It isadvised to incorporate it into mint-related functions, instead of calling it manually.

Recommendations

Decrement mintExposureCap after minting new tokens. This can be done by incorporating
decrementMintExposureCap() into all minting related functions.

Resolution

The development team has advised:

"This is not a bug, the mintExposureCap is not meant to be decremented when tokens are minted from
auction. It is only modified if the mint is thru the function mintOpenExposure() ."

Page | 28

Term Finance Contracts Detailed Findings

TRM-20 Maximum bid and offer prices are scaled up
Asset TermAuctionBidLocker.sol,TermAuctionOfferLocker.sol
Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

TermAuctionBidLocker.MAX_BID_PRICE() and TermAuctionOfferLocker.MAX_OFFER_PRICE() are both set at 10^22 . As
clearing prices are scaled at 10^9 , this value is not the commented 10,000%, but rather 10^13 percent.

Recommendations

Consider setting TermAuctionBidLocker.MAX_BID_PRICE() and TermAuctionOfferLocker.MAX_OFFER_PRICE() to
10^13 .

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - tender prices are now set to 18 decimals.

Page | 29

Term Finance Contracts Detailed Findings

TRM-21 Excessive gas consumption
Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

The testing team did note that many processes in the code consume very large quantities of gas. This is not a securityissue, but it is nevertheless impactful enough to merit significant examination.
In particular, the logic for completing auctions and calculating the clearing price uses loops within loops. It alsoinvolves multiple external calls within loops. These are classic causes of excessive gas usage. Test calls made to
TermAuction.completeAuction() cost 2.5 million gas with 15 bids and offers and 4 million gas with 25. At 152 bidsand offers, the gas usage to call TermAuction.completeAuction() was over 26 million. It is unlikely this will be viable ona public blockchain.
Below are some smaller cases where code can be changed to save gas. This list is by no means exhaustive.

1. TermAuction._findBidIndexForPrice() line [167] the decrement of currentBidIndex could be moved to before
line [162], thereby removing the need to perform the calculation again in sortedBids[currentBidIndex - 1] . Asimilar logic applies on line [217].

2. TermAuction._findBidIndexForPrice() the variable foundBidPrice is only used in a test to decide whether tomodify itself. It can be removed entirely. Also, check that this is not symptomatic of a mistake in the logic of thisfunction. The same is true of foundOfferPrice in TermAuction._findOfferIndexForPrice()

3. TermAuction._calculateClearingPrice() the block starting on line [364] uses the expression
_minUint256(state.cumsumBids, state.cumsumOffers) three times. Repeating calculations almost alwayscosts more gas than storing the result in a memory variable.

4. TermAuction._findLastIndexForPrice() line [515] the test sortedOffers.length > 0 is unnecessary as the
value sortedOffers[i].amount is accessed in the previous line and this would cause a revert if the array hadzero length.

5. TermAuction._assignBids() line [786] the test (i - innerIndex) != k will always be true as it takes placewithin
an else block of the test (i - innerIndex) == k .

6. TermAuctionBidLocker.revealBids() the modifier onlyWhileAuctionRevealing will run once for the call to this
function, and then again for every iteration of the loop as it calls this.revealBid() .

7. TermRepoRolloverManager.electRollover() makes the external call
termRepoServicer.getBorrowerRepurchaseObligation(borrower) twice: on line [130] and line [156].

8. TermRepoCollateralManager._withinNetExposureCapOnLiquidation() the calculation of whether
haircutUSDTotalCollateralValue is within netExposureCapOnLiquidation could be streamlined to a singleratio comparison instead of a subtraction followed by a ratio comparison.

9. TermRepoCollateralManager._withinNetExposureCapOnLiquidation() calculates the expression
termPriceOracle.usdValueOfTokens(purchaseToken,getBorrowerRepurchaseObligation) multiple times.

Page | 30

Term Finance Contracts Detailed Findings

TermRepoCollateralManager._withinNetExposureCapOnLiquidation() stores the return value of
termRepoServicer.getBorrowerRepurchaseObligation(borrower) in a memory variable and then makes the callagain on line [921] and line [931].

10. TermRepoCollateralManager._withinNetExposureCapOnLiquidation() has an expression on line [917] which is notbeing used. These lines could be removed.
11. When incrementing a variable, if the return value is not being used, the format ++i uses less gas than i++ .

Recommendations

For the calculation of the clearing price, consider the following approaches:
1. Fetch the price of each token once during a transaction and reuse this value instead of repeatedly queryingoracles.
2. When revealing bid and offer prices, try to calculate, store and update cumulative data that will help facilitate arapid final calculation.
3. Investigate whether the final algorithm can be restructured entirely to facilitate a faster, simpler calculation. Somemathematical research may be required.
4. Alternatively it may be possible to estimate a starting value that will be generally closer to the final clearing priceand iterate from there, thus reducing the number of iterations.

For the smaller issues listed above, review the code and consider changes to reduce unnecessary gas consumption.

Resolution

The development team has advised:

"As a result of our Runtime audit, we have totally rewritten the clearing price calculation to reduce gas pricesby (around) 50%. We have addressed the other gas optimizations suggested in PR718"

Page | 31

https://github.com/term-finance/term-finance/pull/716

Term Finance Contracts Detailed Findings

TRM-22 Protect against risk of front-running initialize() functions during protocol deployment
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

There are no access control checks on initialize() functions used to configure the protocol during the deployment.
If there is a period when the contracts have been deployed but not initialised, a malicious attacker could front-run theinitialisation process by calling initialize() functions to set their own parameters, e.g. add their own addresses asadmin or set incorrect protocol values.
The relevant contracts include:

• contracts/Authenticator.sol

• contracts/TermAuction.sol

• contracts/TermAuctionBidLocker.sol

• contracts/TermAuctionOfferLocker.sol

• contracts/TermController.sol

• contracts/TermEventEmitter.sol

• contracts/TermInitializer.sol

• contracts/TermPriceConsumerV3.sol

• contracts/TermRepoCollateralManager.sol

• contracts/TermRepoLocker.sol

• contracts/TermRepoRolloverManager.sol

• contracts/TermRepoServicer.sol

• contracts/TermRepoToken.sol

Recommendations

Depending on the current deployment procedure, it is possible that this issue is already addressed. However, the partialnature of TermInitializer gives the testing team some pause. Ideally, consider reworking TermInitializer to handlethe entire deployment and initialisation process in a single transaction. If this is not desired, ensure that the deploymentprocess uses facilities such as the Hardhat deployment functions to initialise all contracts in the same transaction thatthey are deployed in.

Page | 32

Term Finance Contracts Detailed Findings

Resolution

The development team has confirmed that they are using Hardhat plugin to deploy all proxies, which is a preferredapproach as it is all done in a single transaction.

Page | 33

Term Finance Contracts Detailed Findings

TRM-23 Issues relating to collateral tokens sudden price swings
Asset TermRepoCollateralManager.sol

Status Closed: See Resolution
Rating Informational

Description

The development team asked the testing team to consider the case of a sudden price drop in the value of one or morecollateral tokens.
It is true that, after a significant price drop, calculations in _collateralSeizureAmounts will return repayment valueslarger than all of the available collateral balance put up by the borrower.
From batchLiquidation() :
(

collateralSeizureAmount,
collateralSeizureProtocolShare

) = _collateralSeizureAmounts(
closureAmounts[i],
collateralTokens[i]

);

// ...snip...

termRepoLocker.transferTokenToWallet(
termController.getProtocolReserveAddress(),
collateralTokens[i],
collateralSeizureProtocolShare

);

termRepoLocker.transferTokenToWallet(
termAuth.user,
collateralTokens[i],
collateralSeizureAmount - collateralSeizureProtocolShare // SigP: This value will be larger than available collateral balance

);

In such a case, it will be impossible to liquidate some borrowers until the collateral price returns to levels where theavailable balance is sufficient to pay out the liquidator and cover protocol fees.

Recommendations

This is a known issue with collateralised lending protocols. The main mitigation measures are economic managementof the protocol’s settings. In this case, the values of maintenanceCollateralRatios , initialCollateralRatios and
liquidatedDamages in TermRepoCollateralManager will control the margins at which liquidations are possible and therewards for the liquidators. It is necessary to manage these values to mitigate the risk, but risk from a very sudden,rapid price drop will remain. For this reason, choice of collateral is also important: collateral tokens likely to drop inprice very suddenly are best avoided.

Page | 34

Term Finance Contracts Detailed Findings

Resolution

The devlopment team has acknowledged this issue and no further action has been taken as of 31/03/2023.

Page | 35

Term Finance Contracts Detailed Findings

TRM-24 Consider unusual ERC20 token semantics
Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

Whilst being compliant with the ERC20 standard, some implementations extend the specification by adding function-ality or alternative behaviours to various operations. Some particularly notable examples of this are:

• Transfer fees - Where fees are deducted on calls to transfer or transferFrom and forwarded to either theprotocol developers, a treasury, or some other party.
• Rebasing supply - Where the total supply of the token changes either on transfer events or due to some othereconomic policy (e.g., Ampleforth).
• Interest accrual -Where holders of a token may accrue interest or other rewards for holding or staking a token.
• Extreme precision -Where a token may have abnormally low or high decimals (e.g., 0 or 256).

Recommendations

Consider possible edge cases in ERC20 implementations that exist in-the-wild and adjust design assumptions aroundthese accordingly.
Ensure that these assumptions are enforced by the codebase (where possible) and are explicitly documented. Adddedicated token integration tests to the existing testing suite.
The devlopment team has acknowledged this issue and no further action has been taken as of 31/03/2023.

Resolution

The devlopment team has acknowledged this issue and no further action has been taken as of 14/04/2023.

Page | 36

Term Finance Contracts Detailed Findings

TRM-25 Query about irretrievable tokens
Asset TermRepoLocker.sol

Status Closed: See Resolution
Rating Informational

Description

The development team asked the testing team to consider the case where gas limits could lock tokens in
TermRepoLocker .
It is the opinion of the testing team that, with the current logic, gas problems with completeAuction() wouldhave rendered the protocol unusable long before the number of bids would reach the levels necessary to cause
TermAuction.cancelAuction() to fail due to gas limits.
It is conceivable, however, that an auction could become flooded with bids and offers as part of an attack.
In this case, legitimate user funds could always be rescued from TermRepoLocker by upgrading it to a new version witha function that allows the contract to transfer out tokens.

Recommendations

No action required.

Resolution

The devlopment team has acknowledged this issue and is considering a solution of setting a maximum number ofbids/offers allowed per auction, but no further action has been taken as of 14/04/2023.

Page | 37

Term Finance Contracts Detailed Findings

TRM-26 No way to remove from contract registry
Asset TermController.sol

Status Resolved: See Resolution
Rating Informational

Description

There is no way to remove addresses from the registry termAddresses maintained by TermController .
In the situation where a registered contract is discovered to have a serious vulnerability, it would be desirable to nothave it registered as a legitimate contract.

Recommendations

Consider adding a function to TermController that removes entries from termAddresses .

Resolution

Based on a retest of commit e883f0e , the issue has been resolved - unmarkTermDeployed() function to remove a
contract from TermController has now been added.

Page | 38

Term Finance Contracts Detailed Findings

TRM-27 Miscellaneous general comments
Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:
1. Missing NatSpec documentation commentsMany functions throughout the codebase lack either full or any doc-umentation comments at all. This worsens code readability and complicates the use of automated documentationtooling.

Note that, if a function inherits its documentation from another (i.e., when overriding from an interface), the
@inheritdoc NatSpec directive can be used to communicate this.

2. Magic numbers and strings Avoid magic numbers and strings in favour of explicit constants. The latter improvessemantic clarity.
Some individual examples are,

• Expected signature length in Authenticator.sol

• Various numeric literals in dayCountMantissa calculations
• EIP712 header in Authenticator::authenticate

3. Debugging artefacts In TermAuction.sol on line 18, Hardhat’s console.log implementation is left imported
4. TermInitializer does not need to be upgradeable The proxy model is probably undesirable for the initialiser con-tract. It is highly improbable that the contract would be upgraded with its current storage and far more likely thata new version would simply be redeployed.
5. Test may not achieve anything The check on line [290] of TermRepoRolloverManager calls a function

auctionBidLocker.isAuctionBidLocker() . Most incorrect contracts will not have this function and so will simply
revert, not revert with the custom error on line [291]. Some contracts may have a fallback function which couldreturn True . The custom error will only be used if the function (or a fallback) does exist and returns False .

6. Function in interface is not implemented ITermAuctionBidLocker.sol contains the function
collateralTokens(IERC20Upgradeable token) on line [21] but this function is not implemented in the con-tract.

7. TermRepoCollateralManager.initialize() allows inappropriate zero values initialize() allows
collateralTokens_[i].liquidatedDamage to be zero, but this is what is tested to ensure a token is valid
collateral in _isAcceptedCollateralToken() . It may help avoid some potential configuration problems if a zero
value were disallowed for collateralTokens_[i].liquidatedDamage .

8. Zero address checks in initialisers Consider checking that the supplied arguments are not address(0) for the
initialize() functions in the following instances:
• purchaseToken_ in TermRepoServicer.sol

• purchaseToken_ in TermRepoCollateralManager.sol

Page | 39

Term Finance Contracts Detailed Findings

• treasuryWallet_ in TermController.sol

• protocolReserveWallet_ in TermController.sol

9. Particular comment issues

• TermAuction.sol the comment for the functions _findBidIndexForPrice() and
_findOfferIndexForPrice() don’t explain what the second return value does (it seems to be a flagfor whether a higher or equal price was found).

• TermAuction.sol the comment on line [354] mentions offers "lower than" but the function called,
_cumsumOfferAmount() tests for offers lower or equal to. This could be misleading given the comment online [360] which does say, "higher than or equal to".

• TermAuction.sol the comment for the functions _findBidIndexForPrice() and
_findOfferIndexForPrice() don’t explain what the second return value does (it seems to be a flagfor whether a higher or equal price was found).

• The comment on line [693] of TermRepoCollateralManager.sol is wrong. The parameter is actually a structof auction contracts.
• In TermRepoRolloverManager.electRollover() , it is not clear from comments that

termRepoRolloverElectionSubmission.rolloverAuction is an instance of TermAuctionBidLocker and
not TermAuction .

10. Event emitting issues It was noted that bid locking events are not being emitted in
TermAuctionBidLocker.lockBids() . Review and ensure all key events are emitted as required.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where feasible, at their discretion.

Page | 40

Term Finance Contracts Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The brownie framework was used to perform these tests and the output is given below.

tests/test_Authenticator.py xx. [3%]
tests/test_TermAuction.py .x.. [7%]
tests/test_TermAuctionBidLocker.py [28%]
tests/test_TermAuctionOfferLocker.pyxx..... [45%]
tests/test_TermController.py ... [48%]
tests/test_TermEventEmitter.py . [50%]
tests/test_TermInitializer.py ... [53%]
tests/test_TermPriceConsumerV3.py . [54%]
tests/test_TermRepoCollateralManager.py ...xxx.xX [64%]
tests/test_TermRepoLocker.py ... [67%]
tests/test_TermRepoRolloverManager.py [78%]
tests/test_TermRepoServicer.py [85%]
tests/test_TermRepoToken.py [95%]
tests/test_poc_max_price.py . [96%]
tests/test_poc_multicollateral.py . [97%]
tests/test_poc_revert_auth.py . [98%]
tests/test_poc_rollover_max.py x [100%]

Page | 41

Term Finance Contracts Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 42

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Bids only transfer collateral for the first token type
	Unlocking offers does not return any funds
	Cancelling an auction refunds the wrong amount for unrevealed offers
	Liquidations fail with "Division by Zero" errors
	Rollover bids are set to maximum price, causing reverts
	Borrowers cannot withdraw excess collateral after liquidation or default
	No checks for non-zero output address when using ecrecover()
	authenticate() tracked nonces not unique per address
	If a transaction reverts, its authentication token can be reused by any user to authenticate any transaction
	Insufficient Permissions Granted to New Auctions
	Authentication tokens could be reused from another chain or project
	getCollateralBalances() returns tokens at the zero address if a user does not have a balance in a collateral token
	Bid price not accounted for in _isInInitialCollateralShortFall()
	Accounting discrepancy in rollover bids
	Predictable price hashes
	Auction settings can change after an auction starts
	No protection against initialisation of implementation contracts
	Use of transfer() and transferFrom()
	Minting of tokens does not decrement mintExposureCap
	Maximum bid and offer prices are scaled up
	Excessive gas consumption
	Protect against risk of front-running initialize() functions during protocol deployment
	Issues relating to collateral tokens sudden price swings
	Consider unusual ERC20 token semantics
	Query about irretrievable tokens
	No way to remove from contract registry
	Miscellaneous general comments

	Test Suite
	Vulnerability Severity Classification

