
DEDAUB.COM

Term Finance
Smart Contract Security Assessment

June 22, 2023



DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit of the Term Finance protocol. The
auditors found that the changes-under-audit have been properly implemented and do
not introduce any vulnerabilities.

BACKGROUND

The Term Finance Protocol enables noncustodial �xed-rate collateralized lending
on-chain (Term Repos*) modeled on tri-party repo arrangements common in TradFi.
Borrowers and lenders are matched through a unique recurring auction process (Term
Auctions*) where borrowers submit sealed bids and lenders submit sealed o�ers that are
used to determine an interest rate that clears the market for participants of that auction.
Participants who bid more than the clearing rate receive loans and participants willing to
lend below the clearing rate make loans, in each case at the market-clearing rate. All
other participants’ bids and o�ers are said to be “left on the table.” At the conclusion of
an auction, borrowers receive loan proceeds and lenders receive ERC-20 tokens (Term
Repo Tokens*), which are receipts that lenders will burn to redeem for principal plus
interest at maturity. Protocol smart contracts service these transactions by ledgering
repayments andmonitoring collateral health and liquidations.

(* more information about these components can be found in the o�icial docs of the protocol)

SETTING & CAVEATS

This report focuses exclusively on the recent changes in the protocol. The scope of the
audit included the most recent updates to the contracts of the at-the-time private
repository term-�nance/term-�nance introduced in the following PRs:

● PR #923 · Removes authenticator logic from Term and Auction contracts
(merged in main at commit 122513d36a904e42c9e2ad7fcb544bdb3652f2f6)

1

https://docs.term.finance/
https://github.com/term-finance/term-finance
https://github.com/term-finance/term-finance/pull/923


DEDAUB.COM

● PR #931 · Emit version tags for Auctions and Terms when initialized
(merged in main at commit f96f02fe0e7e98687dc9d2e083fd3ce227918cfe)

● PR #939 · Adds rate, min bid, servicing fee and cxl for withdrawal to emi�ed
events
(merged in main at commit 7450b28a8269664e70bb43e31a5f1a8be78657de)

The audit focussed solely on the delta between these versions. The auditors did not
re-audit the whole protocol. All the changes are fairly straightforward in nature and
mainly consist of a change of authentication system and (secondarily) updates in
various events. The changes are also accompanied by corresponding tests.

Previously, the protocol used an authentication system that allowed anyone to execute a
transaction that could have been signed by another account, i.e. to execute on behalf of
a signer. This was possible by using the msg.data of each call and a special struct
containing the signer's information, in the signed message which gave the signer the
guarantee that no one could use his signature to execute a transaction with di�erent
calldata than the one signed for. However, the current changes have removed this
authentication system and replaced it with the direct use of msg.sender. This change
does not introduce any security threats, but it removes the ability to execute a signed
message on behalf of a signer, which is a design-level decision.

Two auditors worked on the codebase for 2 days on the following contracts:

src/
├─ Authenticator.sol
├─ TermAuction.sol
├─ TermAuctionBidLocker.sol
├─ TermAuctionOfferLocker.sol
├─ TermEventEmitter.sol
├─ TermInitializer.sol
├─ TermRepoCollateralManager.sol
├─ TermRepoRolloverManager.sol

2

https://github.com/term-finance/term-finance/pull/931
https://github.com/term-finance/term-finance/pull/939
https://github.com/term-finance/term-finance/pull/939


DEDAUB.COM

├─ TermRepoServicer.sol
│
└─ interfaces/

├─ ITermAuctionBidLocker.sol
├─ ITermAuctionBidLockerEvents.sol
├─ ITermAuctionEvents.sol
├─ ITermAuctionOfferLocker.sol
├─ ITermAuctionOfferLockerEvents.sol
├─ ITermEventEmitter.sol
├─ ITermRepoCollateralManager.sol
├─ ITermRepoRolloverManager.sol
├─ ITermRepoServicer.sol
└─ ITermRepoServicerEvents.sol

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e., issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) speci�cations of
what is the expected, correct behavior. In terms of functional correctness, we often
trusted the code’s calculations and interactions, in the absence of any other
speci�cation. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most e�ectively
done through thorough testing rather than human auditing.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues a�ecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or di�iculty in exploitation:

Category Description

3



DEDAUB.COM

CRITICAL
Can be pro�tably exploited by any knowledgeable third-party a�acker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH
Third-party a�ackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
● User or system funds can be lost when third-party systems
misbehave.

● DoS, under speci�c conditions.
● Part of the functionality becomes unusable due to a programming
error.

LOW

Examples:
● Breaking important system invariants but without apparent
consequences.

● Buggy functionality for trusted users where a workaround exists.
● Security issues whichmaymanifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

CRITICAL SEVERITY:

[No critical severity issues]

HIGH SEVERITY:

[No high severity issues]

4



DEDAUB.COM

MEDIUM SEVERITY:

[Nomedium severity issues]

LOW SEVERITY:

[No low severity issues]

OTHER / ADVISORY ISSUES:

This section details issues that are not thought to directly a�ect the functionality of the
project, but we recommend considering them.

ID Description STATUS

A1
There are no checks to ensure the length compatibility of
the arrays given in multiple functions

INFO

Several contracts have functions that take 2 or more arrays as arguments and iterate
over them using the length of only one of them. If a length mismatch occurs and one of
the arrays has fewer elements than the length used, the execution will fail because it is
trying to access an out-of-bounds element. Some examples of where this happens are
in the following functions:

● TermAuction::cancelAuctionForWithdrawal():414

● TermAuctionBidLocker::revealBids():293
● TermAuctionBidLocker::auctionUnlockBid():355
● TermAuctionBidLocker::_unlock():521
● TermAuctionBidLocker::_getAllBids():574
● TermAuctionBidLocker::_isInInitialCollateralShortFall():795
● TermAuctionBidLocker::_isInMaintenanceCollateralShortFall():830

5



DEDAUB.COM

● TermAuctionOfferLocker::revealOffers():280

● TermRepoCollateralManager::journalBidCollateralToCollateralManag
er():706

You could add checks before using these arrays to ensure that their lengths match,
which would also save some gas in case of failure.

A2 Compiler bugs INFO

The code is compiled with Solidity 0.8.18 or higher. For deployment, we recommend
no floating pragmas, i.e., a speci�c version, to be con�dent about the baseline
guarantees o�ered by the compiler. Version 0.8.18, at the time of writing, has no
known bugs.

6

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1775


DEDAUB.COM

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a su�icient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub o�ers signi�cant security expertise combined with cu�ing-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and �nancial
mathematics.

7


