
Term Finance

Term Finance – Smart Contract Changes
(Part 2)

Security Assessment Report

Version: 2.1

November, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Incomplete Support for Multi Auction Rollovers . 7Lack Of Maturity Checks On Repurchase Payment . 9No Zero Address Check On Admin Wallet . 10Miscellaneous General Comments . 11
A Test Suite 12

B Vulnerability Severity Classification 13

1

Term Finance – Smart Contract Changes (Part 2) Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of a selected list of changesmade to the Term Finance smart contracts.
The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Term Finance smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Term Finance smart contracts.

Overview

Term Finance is a noncustodial fixed-rate liquidity protocol modeled on tri-party repo arrangements common intraditional finance.
Liquidity suppliers and takers arematched through a uniqueweekly auction processwhere liquidity takers submitbids and suppliers submit offers to the protocol, which then determines an interest rate that clears the market.
Bidders who bid more than the clearing rate receive liquidity and lenders asking less than the clearing rate,supply.

Page | 2

Term Finance – Smart Contract Changes (Part 2) Security Assessment Summary

Security Assessment Summary

This reviewwas conducted on the files hosted on the term-finance repository, with majority of the code changesassessed at the commit tagged 0.5.6 (3bac4c5).
The scope of this assessment was strictly limited to the code changes related to the following PRs:

• PR 931

• PR 947

• PR 954

• PR 981

• PR 948

• PR 953

• PR 1004

• PR 1045

• PR 1056

• PR 1072

• PR 1074

• PR 1097

• PR 1098

• PR 956

• PR 977

• PR 980

• PR 988

• PR 990

• PR 1018

• PR 1066

• PR 1121

• PR 1132

Note, PR 1097, PR 1098, PR 1121 and PR 1132were assessed at commit f766367 of term-finance-contracts repos-itory, which aside from changes strictly related to these PRs, is identical to commit 3bac4c5 of term-financerepository, where all other remaining PRs were assessed.
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities as-sociated with the business logic implementation of the contract changes in scope. This includes their internalinteractions, intended functionality and correct implementation with respect to the underlying functionality ofthe Ethereum Virtual Machine (for example, verifying correct storage/memory layout). Additionally, the manualreview process focused on all known Solidity anti-patterns and attack vectors. These include, but are not limitedto, the following vectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers.For a more thorough, but non-exhaustive list of examined vectors, see [1, 2].

Page | 3

https://github.com/term-finance/term-finance
https://github.com/term-finance/term-finance/commit/3bac4c5f33d3a54b71fdb75e161119a3300f4651
https://github.com/term-finance/term-finance-contracts/commit/f766367dfc33ba7b93f6e29f27f12e65c132d242
https://github.com/term-finance/term-finance-contracts
https://github.com/term-finance/term-finance/commit/3bac4c5f33d3a54b71fdb75e161119a3300f4651
https://github.com/term-finance/term-finance

Term Finance – Smart Contract Changes (Part 2) Findings Summary

To support this review, the testing team used the following automated testing tools:
• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 4 issues during this assessment. Categorised by their severity:
• Medium: 1 issue.
• Low: 2 issues.
• Informational: 1 issue.

Page | 4

https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the code changes made toTerm Finance’s smart contracts, as per the scope. Each vulnerability has a severity classification which is deter-mined from the likelihood and impact of each issue by the matrix given in the Appendix: Vulnerability SeverityClassification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
TRM3-01 Incomplete Support for Multi Auction Rollovers Medium Resolved

TRM3-02 Lack Of Maturity Checks On Repurchase Payment Low Closed

TRM3-03 No Zero Address Check On Admin Wallet Low Resolved

TRM3-04 Miscellaneous General Comments Informational Closed

6

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

TRM3-
01

Incomplete Support for Multi Auction Rollovers

Asset TermRepoRolloverManager, TermRepoServicer
Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

The code allows multiple auctions to be approved for rollovers, but the functionality does not appear to be fully imple-mented.
In TermRepoRolloverManager , the variable approvedRolloverAuctions is a mapping which allows for multiple auc-
tions to be simultaneously approved for rollovers. It is possible to call approveRolloverAuction() to process multiplerollovers into multiple auctions.
However, the state variable rolloverElections does not allow for multiple rollover elections to different auctions to
be stored at once. Also, the logic of electRollover() , when it checks this variable, assumes that it is always checkingagainst a rollover election to the same target auction.
There are also no checks in approveRolloverAuction() to verify if termAuction provided as a parameter is tied to
provided auctionBidLocker . As such, it is possible to use an arbitrary TermAuctionBidLocker to approve an arbitrary
TermAuction.
Furthermore, TermRepoServicer._getMaxRepaymentAroundRollover() checks the value of rolloverElections when it
calls termRepoRolloverManager.getRolloverInstructions() and makes calculations on this basis. If multiple auctionswere elected, however, there could be rollovers that have been written over for this variable and so the calculations in
TermRepoServicer._getMaxRepaymentAroundRollover() could be incorrect.

Recommendations

Only allow one auction to be rolled over into, or implement full multiple rollover support by including the rolloverauction address as an additional level in the rolloverElections mapping.
Modify implementation of approveRolloverAuction to use termAuction tied to provided auctionBidLocker , ratherthan relying on supplied input.

Resolution

The finding has been resolved in PR 1136 and PR 1146 (included in commit a92e649 and the corresponding andequivalent public repository 8312927).
The development team has also provided further comments on approvedRolloverAuctions mapping:

"We give the user different choices to rollover their loan, but they must select one of them. We want to support

Page | 7

https://github.com/term-finance/term-finance/pull/1136
https://github.com/term-finance/term-finance/pull/1146
https://github.com/term-finance/term-finance/commit/a92e64993c95dc2acb8ca5b65c1e1378dc1fc45b
https://github.com/term-finance/term-finance-contracts/commit/831292726cdc22e9d4d2953d59051fa00fbd4f72

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

the ability for them to reconsider and choose the other option if they previously elected a roll to the undesired
auction."

Page | 8

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

TRM3-
02

Lack Of Maturity Checks On Repurchase Payment

Asset TermRepoServicer

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The submitRepurchasePayment() function does not check if the payment is being submitted before maturity.
Previous implementation used to revert with NotMaturedYet() error if the current block timestamp was less than the
specified maturityTimestamp .

Recommendations

Validate if this behaviour is as per intended business logic. If required, implement checks to ensure repurchase paymentscannot be submitted prematurely, e.g.:
if (block.timestamp < maturityTimestamp) {

revert NotMaturedYet();
}

Resolution

The finding has been closed with the following comment from the development team:

"We specifically removed the check on PR 1045 for the redemption timestamp because borrowers wanted the
option to unlock collateral if an opportunity arose and there is no downside to the lender so long as they repay in
full, including all interest due on the full term - it in fact de-risks the pool at no cost."

Page | 9

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

TRM3-
03

No Zero Address Check On Admin Wallet

Asset TermController

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

There are no zero address checks on controllerAdminWallet_ during initialize() in TermController .
If controllerAdminWallet_ is set to address(0) , any future calls to updateControllerAdminWallet() will always faildue to the check on line [151].

Recommendations

Implement checks to ensure controllerAdminWallet_ passed to initialize() is never address(0) .
Alternatively, modify implementation of updateControllerAdminWallet() to not revert on zero addresses.

Resolution

The finding has been resolved in PR 1138 (included in commit a92e649 and the corresponding and equivalent publicrepository 8312927).

Page | 10

https://github.com/term-finance/term-finance/pull/1138
https://github.com/term-finance/term-finance/commit/a92e64993c95dc2acb8ca5b65c1e1378dc1fc45b
https://github.com/term-finance/term-finance-contracts/commit/831292726cdc22e9d4d2953d59051fa00fbd4f72

Term Finance – Smart Contract Changes (Part 2) Detailed Findings

TRM3-
04

Miscellaneous General Comments

Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Servicing fee collateral
TermRepoRolloverManager._processRollover() reduces the rollover bid amount by the amount of the servicing
fee. One side effect of this is that, when a bid rolls over, a small amount of collateral is left in the TermRepoLockerof the first auction. Whilst this is not a security concern, it might cause a negative user experience.

2. Code split between two functions
Perhaps as a result of the code changes, TermAuctionBidLocker.lockRolloverBid() has half of the code it runs
split into _lockRolloverBid() . This split does not seem to be adding either utility or clarity, so consider combiningall the code into one of the two functions.

3. Variable name
Consider renaming rolloverAuction to rolloverAuctionBidLocker in both of TermRepoRolloverElection.sol

and TermRepoRolloverElectionSubmission.sol , and updating any related variable names where those structs areused. It would substantially improve the clarity of the related code.
4. Unnecessary use of upgradeable contract

In TermInitializer , the contract AccessControlUpgradeable is inherited from, but TermInitializer itself isnot upgradeable. This does not cause any security issues in itself, but could be confusing. Consider using thenon-upgradeable version, AccessControl .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments above have been acknowledged by the development team and selected findings were actioned in thefollowing PRs:
• Variable name - PR 1150 (included in commit a92e649 and the corresponding and equivalent public repository8312927).

Page | 11

https://github.com/term-finance/term-finance/pull/1150
https://github.com/term-finance/term-finance/commit/a92e64993c95dc2acb8ca5b65c1e1378dc1fc45b
https://github.com/term-finance/term-finance-contracts/commit/831292726cdc22e9d4d2953d59051fa00fbd4f72

Term Finance – Smart Contract Changes (Part 2) Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The brownie framework was used to perform these tests and the output is given below.

tests/test_TermAuction.py [5%]
tests/test_TermAuctionBidLocker.pys........... [26%]
tests/test_TermAuctionOfferLocker.py ...s............. [46%]
tests/test_TermController.py ... [50%]
tests/test_TermEventEmitter.py . [51%]
tests/test_TermInitializer.py .. [53%]
tests/test_TermPriceConsumerV3.py . [54%]
tests/test_TermRepoCollateralManager.py [61%]
tests/test_TermRepoLocker.py ... [65%]
tests/test_TermRepoRolloverManager.py [77%]
tests/test_TermRepoServicer.py .x..... [85%]
tests/test_TermRepoToken.py [96%]
tests/test_poc_repurchase.py . [97%]
tests/test_poc_rolloverCollateral.py . [98%]
tests/test_poc_rolloverToTwoAuctions.py . [100%]

==================================== warnings summary ====================================

(...snip...)

=========== 81 passed, 2 skipped, 1 xfailed, 1819 warnings in 131.31s (0:02:11) ==========

Page | 12

Term Finance – Smart Contract Changes (Part 2) Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 13

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Incomplete Support for Multi Auction Rollovers
	Lack Of Maturity Checks On Repurchase Payment
	No Zero Address Check On Admin Wallet
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

