
DRAFT
Maverick v2 - The Liquidity Operating System

Maverick Research Team

January 2024

1 Introduction

Maverick v2 introduces several improvements over Maverick v1:

• Improved Swap Gas - Swap gas cost in v2 is now less than 100k, making Mav-
erick by far the lowest-gas concentrated-liquidity AMM in the market.

• Programmable Pools - Maverick v2 allows for protocols and pool creators to
wrap pools in router contracts that implement specialty logic. This makes it
straightforward for users to implement ideas like a KYC pool or a pool with
dynamic swap fees, or even to build their own custom liquidity rebalancing
mechanism. This logic-wrapping mechanism is both more flexible and more
gas-efficient than hook-based paradigms.

• Boosted Positions Incentive Directing - With v1, Maverick proved the utility
and efficiency of Boosted Positions (BPs) in shaping global liquidity distribu-
tions for objectives like holding a peg or creating buy/sell price walls. Maver-
ick v2 BPs can now receive matching incentives on the basis of vote-escrowed
token voting, adding more value for both token projects and LPs.

• Any-Token Voting Escrow Factory - Maverick v2 has a turn-key factory mech-
anism that lets any protocol create a ve token that can vote for Maverick BPs.
The ve token creator can choose the base tokens and the parameters of the
voting system specific to that token, thereby enabling a ready-made liquidity
flywheel for new token projects that need to shape their global liquidity distri-
bution.

2 AMM

Maverick v2 AMM is a dynamic distribution AMM where LPs can choose to have
their liquidity automatically move to stay near the price. The outward-facing func-
tionality of the v2 AMM is almost identical to v1, but the underlying mechanisms
have changed significantly to lower gas costs and allow for more flexible liquidity
movement options.

The following subsections define the implementation logic of the AMM.

Page 1 of 23

DRAFT
2.1 Pool

Pools are created by calling the create function on the pool factory. Pools are de-
fined by the following parameters:

• fee - Portion of each swap that is paid to the pool liquidity providers

• tickSpacing - Defines the tick width where tick width is 1.0001tickSpacing

• lookback - Lookback time that is used by the time-weighted average price
component of the pool

• tokenA - Quote token in the pool

• tokenB - Base token in the pool

• activeTick - Starting tick of the pool that defined the initial pool price

• tokenAScale - Scale factor of quote token used to convert the token units
from the decimal scale of the token to the internal 18-decimal pool accounting

• tokenBScale - Scale factor of base token used to convert the token units from
the decimal scale of the token to the internal 18-decimal pool accounting

• kinds - Flag that indicates which bin kinds are available in the pool

• accessor - Address of pool accessor for programmable pools; permissionless
pools do not have an accessor defined

The biggest difference from v1 is that in v2 a pool creator can choose to restrict
the bin kinds (i.e., Static, Right, Left, Both) in a given pool to just a subset of the four
bin kinds (Static is required). A pool creator may want to do this to further improve
gas savings of swaps or to ensure that no LPs join a movement-mode bin that works
against the objective of the pool creator.

A second notable difference is the concept of a programmable pool, where only
one address can access the pool state-changing functions such as addLiquidity,
removeLiquidity, and swap. By restricting access to a pool, a pool creator can
implement creative mechanisms like dynamic swap fees, liquidity rebalancing, or
any other strategy that can be executed on a smart contract. For more information,
see Section 2.6 in this whitepaper.

The pool state is a structure on the pool that gets loaded during pool write oper-
ations. It is two storage slots wide and is composed of the following values:

• reserveA - Quote token balanceOf value at the end of the last operation

• reserveB - Base token balanceOf value at the end of the last operation

• lastTwa - Last value of the time-weighted average of logp1.0001 pr i ce

• lastLogPrice - Last value of logp1.0001 pr i ce

• lastTimestamp - Timestamp of last swap

Page 2 of 23

DRAFT
• activeTick - Tick that contains the current price of the pool

• isLocked - Boolean indicator of whether the pool is locked or not

• binCounter - Number of bins that have ever been created in the pool

• protocolFeeRatio - Proportion of the swap fee that is kept aside by the pool
as a protocol fee

In addition to these state values, there is another slot for state values that store
the protocol fees: protocolFeeA and protocolFeeB. These two values are held
aside and only loaded on swaps if protocolFeeRatio ̸= 0. Finally, the pool has
two mappings: one that maps binId to the state of that bin called bins and another
that maps the tick position to the tick state object for that tick position called ticks.

2.2 Ticks

Maverick v2 introduces a new element of internal accounting called a “tick.” Each
tick can contain up to four “bins,” one of each bin type: Static, Right, Left, and Both.
Each tick also stores the total amount of reserves contained in the constituent bins
as well as the “total tick supply” of the four bins. This new tick storage mapping al-
lows the AMM to avoid having to read four storage slots on each swap to find the ag-
gregate liquidity in a tick. Instead, the tick maintains this aggregate liquidity amount
and the bin objects have claim to their pro rata share of the tick.

The TickState struct has the following elements:

• reserveA - Quantity of quote tokens in all bins in this tick

• reserveB - Quantity of base tokens in all bins in this tick

• totalSupply - Quantity of bin “shares” that the bins in this tick collectively
possess

• binIdsByTick - Four-element array of the binIds in this tick.

The tick width is configurable at pool creation. We define the tick position by its
two edges that correspond to the lower (pl) and upper (pu) price of the tick. The
tick width can be as small as 1 basis point so that pu = 1.0001pl and as big as pu =
1.000110000pl where 1.000110000 ≈ 2.71.

The swap invariant for a tick is

L2 =
(
B + Lp

pu

)(
A+L

p
pl

)
, (1)

where B is the amount of base token in the bin, A is the amount of quote token in the
bin, and L is the amount of liquidity in the tick. For each swap, the AMM contract
uses this invariant to compute the output value of the swap by ensuring the invariant
still holds after the swap.

Page 3 of 23

DRAFT
2.3 Bins

Bins exist in ticks. There are four types of bin: Static, Right, Left, and Both. At any
given time there can only be one of each type of active bin in a tick. Movement-
mode bins (Right, Left, Both) can move from one tick to another depending on the
price and configuration of the AMM. To track bin movements, bins are stored as a
linked list where the parent bin of the list is said to be “active” and all of the children
bins are said to be “merged.” Only the active bin will exist in the tick’s binIdsByTick
mapping.

As movement-mode bins move, they may move to a tick that already has a bin
of the same type. When this happens, the tick with the lower binId will remain
active, and the bin with the higher binIdwill merge into this active bin. The detailed
mechanics of this merge operation are described later in the whitepaper.

2.3.1 Bin State

Each bin has the following state elements:

• mergeBinBalance - Quantity of mergeId bin LP tokens this bin has a claim
to; mergeId is only ̸= 0 when bin has been merged

• tickBalance - Quantity of this tick’s totalSupply that this bin possesses

• totalSupply - Quantity of LP tokens that have been minted for this bin

• kind - A value indicating the bin kind type in the set Static, Right, Left, or Both

• tick - Signed value of the tick position defined as lowerTick= tickSpacing

log1.0001(pl)

• mergeId - ID of bin that this bin has merged in to

• balances - LP token balance for each Position NFT ID

2.3.2 Adding Liquidity to a Bin

Users specify the amount of liquidity to add in terms of bin LP balance they desire
and the contract calculates the amount of each token type required to get that much
liquidity. The contract will call the maverickV2AddLiquidityCallback function
on the calling contract to collect the required token amounts.

User liquidity tracking is stored in thebalancesmapping by both themsg.sender’s
address and a “subaccount” that the user specifies. This allows a user to segment
their liquidity holdings into different subaccounts. For instance, theMaverickV2Position
ERC-721 contract uses subaccounts to store liquidity for different tokenIds for a
given user.

The bin LP balance calculation takes one of two forms depending on whether
the tick that contains the bin has liquidity already. If the tick has a non-zero reserve
amount in either token, then the required token amounts are computed as

∆A = deltaLPBalance

max{1,T Sbi n}

max{1,binTickBalance}

max{1,T St i ck }
Atick, (2)

Page 4 of 23

DRAFT
∆B = deltaLPBalance

max{1,T Sbi n}

max{1,binTickBalance}

max{1,T St i ck }
Btick, (3)

where T St i ck is the total supply of the tick and T Sbi n is the total supply of the bin. If
the tick has no reserves, then the required token amounts are

∆A =
{
deltaLPBalance

p
pl tick< activeTick

0 tick≥ activeTick
(4)

∆B =
0 tick< activeTick

deltaLPBalance
/p

pu tick≥ activeTick.
(5)

These values are derived by defining

deltaLPBalance≜∆L
(√

1.0001tickspacing−1
)

, (6)

and realizing that an empty tick will always have only single-sided liquidity on the
first add call. That is, for an all-A tick, using (1) we have the relationship

∆A =∆L
(p

pu −p
pl

)
, (7)

and for an all-B bin, we have

∆B =∆L

p
pu −p

plp
pu

p
pl

. (8)

That is, substituting (6) into (4) and (5) results in the relationships (7) and (8). The
scaling factor of

p
1.0001tickspacing−1 helps maintain consistent token-amount to

LP balance ratios regardless of the tick width of a pool.
When adding to a bin, we also need to compute and update the delta balances

for that bin in its tick. The deltaTickBalance is computed as

deltaTickBalance= deltaLPBalance
max{1,binTickBalance}

max{1,TSbin}
. (9)

These computed delta values are used by the AMM to update the following state
variables:

• bin.totalSupply - Incremented by deltaLPBalance

• bin.balances[user][subaccount] - Incremented by deltaLPBalance

• bin.tickBalance - Incremented by deltaTickBalance

• tick.totalSupply - Incremented by deltaTickBalance

• tick.reserveA - Incremented by ∆A

• tick.reserveB - Incremented by ∆B

The one caveat to this process is that the first MINIMUM LIQUIDITY amount of
liquidity added to a bin is donated to the bin as permanent liquidity by the first user
to add liquidity to the bin. This donated liquidity inflates the totalSupply of the
bin, implicitly locking that amount of LP balance in the bin. But the user still receives
exactly the amount of LP balance they requested, which is important to make it easy
to interoperate with the pool.

Page 5 of 23

DRAFT
2.3.3 Moving and Merging Bins

Movement-mode bins (i.e., bins with a kind property of right, left, both) may move
right or left with price as traders swap with the pool. When this happens, the tick
value of the bin changes. The new tick value is set to the new tick position of the
bin.

The merging procedure is similar to the procedure in Maverick v1, with the extra
complication that bins exist in ticks and ticks store the reserve balances for all bins
in a given tick. Having ticks does not alter the concept of the merge; it just requires
that the AMM smart contract do an extra level of accounting as part of the merge to
update both the bin and tick state variables.

For the sake of example, assume that the movement condition has been trig-
gered in the rightward direction and we are merging/moving mode right bins. The
details of the movement condition are discussed in the TWAP section below. The
process for moving a bin under these conditions is as follows:

1. Search left and right from the tick that contained the TWAP prior to the swap.
In each of these three ticks (tick - 1, tick, tick + 1) determine if a mode-right
bin exists by checking whether binIdsByTick[1] is non-zero. There will be
at most three binIds that result from this search.

2. Search this 3-binId list to find the smallestbinId, which we denotefirstBinId.
This will be the binId of the active bin in this tick at the end of the procedure.
The other bins will be merged.

3. Merge the list of bins by

(a) Computing the reserveA and reserveB amounts in each of the bins to
be merged. These reserve values are computed with

∆A = tick.reserveA
bin.tickBalance

TStick
(10)

∆B = tick.reserveB
bin.tickBalance

TStick
. (11)

(b) Computing themergeBinBalanceby computing the bin LP balance each
of the merged bins has claim to in the new parent bin. First determine
whether to use ∆A or ∆B in the calculation by determining whether the
tick is all quote or all base. For this example, assume the bin is all quote
token. The next step is to compute the amount of the quote reserves the
new parent bin currently possesses with

A f i r stBi n = firstBinTick.reserveA
firstBin.tickBalance

TSfirstBinTick
. (12)

Finally, each merged bin’s LP balance in the firstBin is

mergeBinBalance= T S f i r stBi n
∆A

A f i r stBi n
. (13)

Page 6 of 23

DRAFT
(c) Setting the new parent bin’smergeBinBalance to be the sum of themergeBinBalances

from the one or two bins being merged.

(d) Incrementing tick.reserveA or tick.reserveB by the sum of the ∆A
or ∆B values

(e) Incrementing the firstBin’s tickBalance to account for these new re-
serves

(f) Setting the mergeId of each bin being merged to firstBinId

(g) Removing the bin from the tick by decrementing tick.totalSupply by
bin.tickBalance, decrementing tick.reserveA by ∆A, decrement-
ing tick.reserveB by ∆B , and setting tickState.binIdsByTick[1]
(1 corresponds to mode right) to zero.

4. Move the new parent bin (firstBinId) to its new tick if needed. It may be
that the parent bin is already in the desired ending tick. If not, the movement
operation is similar to the merge operation where the contract

(a) Computes the delta reserve values in the moving bin

(b) Adds these reserves to the new tick by modifying the reserves andtick.totalSupply
of the old and new tick

(c) Updates the bin’s tickBalance value to be in units of the new tick

(d) Updates the bin’s tick value to be the new tick

The result of this process is that the merged bin now holds an LP token balance
of mergeBinBalance in the active bin, but the LP balances, which track the LP
balance of each user in each bin, have remained the same. The active bin now has a
totalSupply of LP tokens equal to its original balance and the mergeBinBalance
that the merged bin now holds in it.

Tracking the balances this way makes merges computationally tractable on chain,
because it means that the contract does not have to iterate through all LPs’ positions
to update balances on a merge. Instead, as discussed in the next section, the LPs still
claim their LP tokens on the original (now merged) bin, and the contract recursively
traverses merged bins to get to the active bin where the reserves are all held.

2.3.4 Removing Liquidity

An LP can remove liquidity from a bin by specifying their subaccount, the bin’s
binId, and the amount of LP balance they want to remove from that bin.

For an active bin, the process is straightforward. The contract checks to make
sure the Position has at least the amount of LP balance the user is trying to withdraw.
If the balance is sufficient, the bin disburses a pro rata amount of reserve out back
to the user:

Aout = amount

T Sbi n
αreserveA, (14)

Bout = amount

T Sbi n
αreserveB, (15)

Page 7 of 23

DRAFT
where

α= bin.tickBalance

T St i ck
. (16)

For a merged bin, the process is similar, but the calculation is recursive. Say
an LP in the merged bin, binId = im , wants to remove amount of their LP balance
from that now-merged bin. That merged bin no longer has any reserves directly
associated with it. But it does possess an LP balance in the active bin with binId= ia

and those balances correspond to reserve amounts,

Aia =αmergeBinBalancem
totalSupplya

reserveAa, (17)

Bia =αmergeBinBalancem
totalSupplya

reserveBa. (18)

The LP is removing amount from bin binId= im . So the net amount the user will
receive is

Aout =α amount

totalSupplym

mergeBinBalancem
totalSupplya

reserveAa, (19)

Bout =α amount

totalSupplym

mergeBinBalancem
totalSupplya

reserveBa. (20)

A user must first call migrateBinsUpStack for any binIds that the user wants
to remove that are merged more than one level deep. The migrate function will move
the bins up the linked list of merged bins until each migrated bin is pointing to an ac-
tive bin. The requirements for this migration operation is that users should maintain
the same pro-rata claim to the parent bin’s LP balance before and after migration. As
part of that function, mergeBinBalance of the bins being migrated will be updated
along with the balances of the bin that was the head bin, i.e., balances[0] of the
old head bin.

2.3.5 Migrate Bins Up Merge Stack

To migrate a bin up the merge stack, consider a merged bin with binId = i1 and
another merged bin with binId= i2 that is merged into bin i1. The active bin, with
binId = ia , has bin i1 as a child so that the full list of bins in this example is ia ←−
i1 ←− i2. After the migration process, i2 will move up the list so that both i1 and i2 are
direct children of ia .

Prior to migration, bin i2 has the following implicit claim to the totalSupply in
bin ia :

cl ai mia←−i2 =
mergeBinBalance2
totalSupply1

mergeBinBalance1
totalSupplya

. (21)

Also,
balancea[0] = mergeBinBalance1. (22)

Note that the mergeBinBalance of a given bin is in the unit of totalSupply or
balanceof the bin’s parent. If the bin has no parent, then there is no mergeBinBalance
because the bin has no balance ownership of another bin.

The migration process is:

Page 8 of 23

DRAFT
1. Subtract mergeBinBalance2 from the totalSupply1 of bin i1.

totalSupply′1 = totalSupply1 −mergeBinBalance2. (23)

2. Find the new mergeBinBalance′2 of bin i2 which is its balance in bin ia . Note
bin ia and bin i1 have different units of totalSupply which is why we need
to transform the mergeBinBalance in the migration process.

mergeBinBalance′2 =
mergeBinBalance2
totalSupply1

mergeBinBalance1. (24)

3. Subtract the mergeBinBalance′2 from the mergeBinBalance1 of bin i1.

mergeBinBalance′1 = mergeBinBalance1 −mergeBinBalance′2. (25)

4. Update the mergeId in bin i2 from i1 to ia .

After migration, bin i2 now has a claim to the supply in ia that is

cl ai mia←−i2 =
mergeBinBalance′2
totalSupplya

. (26)

cl ai mia←−i2 =
mergeBinBalance2
totalSupply1

mergeBinBalance1
totalSupplya

, (27)

which is consistent with the initial condition in (21). Likewise, post migration, the
mergeBinBalance in bin i1 has been reduced by the amount of merged bin LP bal-
ance that got migrated away from this bin and up to its parent, ia such that

balancea[0] = mergeBinBalance′1+mergeBinBalance′2, (28)

which is consistent with (22). In this process, because of how the balance tracking
is structured, there was no need to modify any of the state of bin ia . This process is
repeated recursively from bottom to active bin when the merge stack has more than
three bins. As a note, once a bin is eligible for migration, it is not active any longer
and will not have any more bins merge into it.

The AMM code contains rounding decisions for any quotient operations. As part
of this migration, the AMM rounds the multiplication-division in (24) down, which
has the effect of rounding up mergeBinBalance′1 in (26). The result of this design
decision is that when a bin has two or more merged children bins, the bins merged
later get a one-unit rounding boost in their claim to the mergeBinBalance.

2.4 Swapping

2.4.1 Callback Mechanics

Swapping is callback-based, which allows users to “flash swap” such that they can
collect the proceeds of their swap before they have to transmit what they owe to the

Page 9 of 23

DRAFT
contract. Users can swap by specifying either the exact amount they want to receive
of a given token or the exact amount they want to swap in.

The contract will disburse the proceeds to the user. In calling a swap on the
pool, the user had to provide a callback function. To pay the contract what it is owed
for the swap, the contract will call the user-provided callback, which will need to
transmit the user’s tokens to the contract in order for the transaction to complete.

2.4.2 Swapping in a Bin

For any given position in price, there can be up to four active bins, but the changes
in accounting in v2 mean that the contract does not need to pull reserves from four
bins because the reserves in a tick are stored at the tick level. It also means that,
post-swap, the amounts do not need to be written back to each of the four bins
individually.

The process is as follows:

1. Pull the reserves A and B from the active tick.

2. Compute the aggregate liquidity by solving this quadratic for L

0 =
(√

pl

pu
−1

)
L2 +

(
Ap
pu

+B
p

pl

)
L+ AB , (29)

which leads to

L =
p

pup
pu −p

pl

(
b

2
+

√
b2

4
+ AB

(p
pu −p

pl
)

p
pu

)
, (30)

where b ≜ A
/p

pu +B
p

pl .

3. Compute sqrt price,
p

P
p

P = A+L
p

pl

B +L/
p

pu
(31)

4. Extract fee from the token balance coming in and set that aside as either A f ee

or B f ee

5. Extract the protocol fee from the total fee

Apr otocol = A f ee ·state.protocolFeeRatio (32)

Bpr otocol = B f ee ·state.protocolFeeRatio (33)

6. Use the identities to compute ∆A and ∆B

∆
p

P = ∆A

L
(34)

∆
1p
P

= ∆B

L
(35)

Page 10 of 23

DRAFT
7. Update the reserves of the tick

Anew = A+ (
∆A+ A f ee − Apr otocol

)
(36)

Bnew = B + (
∆B +B f ee −Bpr otocol

)
(37)

8. Update pool reserve values state.reserveA and state.reserveB

9. Update pool protocol fee valuesstate.protocolFeeA andstate.protocolFeeB

10. Update TWAP with the new ending price of the swap

2.4.3 Rounding

The contract is designed to round appropriately in order to remain solvent with re-
spect to the pool’s balance according to tokenA and tokenB ERC-20 contracts. In
particular, the contract must ensure that the token balances according to the ERC-
20 contracts are always greater than or equal to the sum of the tick’s reserves.∑

i
reserveAi ≤ ERC A −state.protocolFeeA (38)

∑
i
reserveBi ≤ ERCB −state.protocolFeeB (39)

2.4.4 Swapping Through Ticks

A swap may be large enough that it will swap an entire bin. If this happens, the
swap-in-a-bin process described above will be repeated again for the next adjacent
bin set with any remaining assets that are still to be swapped.

2.5 Moving Bins and TWAP

A pool’s time-weighted average price (TWAP) is computed recursively using an au-
toregressive averaging process. “Price” in this context is actually the log1.0001 pr i ce
value which is the price value in the tick domain. That is, we can think of TWAP
being a moving average of the log price or of the fractional tick position of the pool.
Each TWAP update changes the following three pool state values: state.lastTwa,
state.lastTimestamp, state.lastLogPrice.

From those three state values and the current block timestamp, t , the current
TWAP is calculated as the weighted average of state.lastLogPrice and state.-
lastTwa such that if zero time has passed since the last reading, the TWAP will
be state.lastTwa while if more than lookback time has passed, TWAP will be
weighted in the direction of state.lastLogPrice.

Mathematically, we compute TWAP by first precomputing two values, ∆p, the
deviation between state.lastLogPrice and state.lastTwa, and ∆t , the devia-
tion between state.lastTimestamp and the timestamp:

∆t ≜min
{
lookback, t −lastTimestamp

}
, (40)

Page 11 of 23

DRAFT
∆t ≜

{
0 ∆t < MIN INTERVAL

∆t ∆t ≥ MIN INTERVAL,
(41)

∆p ≜min
{
1, |lastLogPrice−lastTwa|} . (42)

∆p ≜

{
−∆p lastLogPrice< lastTwa

∆p lastLogPrice≥ lastTwa,
(43)

From these equations, the following bounds hold:

−1 ≤∆p ≤ 1 (44)

and
0 ≤∆t ≤ lookback. (45)

These deviation values combine to compute the current TWAP via

T W AP =∆p
∆t

lookback
+lastTwa. (46)

It is clear from the bounds that TWAP moves at most one tick in a given update
and this max movement only occurs if lookback seconds have passed since the
last swap and the new swap price is at least a tick away from the lastTwa value.
Likewise, in the case where N swaps total happen at the minimum spacing of MIN
INTERVAL seconds and all swaps are more than one tick away from the starting
lastTwa, then the maximum movement is

T W AP = lastTwast ar t i ng +
N∑

i=1

MIN INTERVAL

lookback
. (47)

From this equation, it is clear that the TWAP moves at most∆t
/
lookback for any in-

terval∆t , which means that the maximum movement is the same whether one swap
happens at a large time spacing or many swaps happen on smaller time intervals.

The contract tracks the TWAP of the pool by registering the price of the pool at
the end of the first swap in each block if MIN INTERVAL seconds has passed since the
last swap. If less than MIN INTERVAL seconds has passed, then none of the TWAP
state parameters are updated.

After a swap, the contract checks to see if any bins need to be moved. If so, then
the move proceeds. Within a block, no time passes between operations, so the TWAP
will also not change for the duration of the block. Because of this, no bins will move
beyond the first swap in a block, as any subsequent checks for movement will find
the bins already in line with the TWAP. These mechanisms mean that a swapper can-
not move liquidity using a swap inside of a single block. This makes the movement
robust to large inner-block flash swap operations that may significantly move the
price.

For example, in the case of a large two-step flash swap that moved the price
up and then back down inside the block, none of the dynamic liquidity bins would
move in response and the TWAP would be unaffected by the large price excursion.
For liquidity to move, a swapper would have to leave their capital on chain for at least

Page 12 of 23

DRAFT
one block period, which would leave that liquidity exposed to arbitrageurs, thereby
discouraging any such toxic liquidity movement manipulations. Moverover, for a
swapper to move the liquidity more than one tick requires that lookback seconds
have passed per tick of movement. A common lookback value in Maverick v1 was
3 hours, which is a considerable amount of time for a would-be pool manipulator to
try a price manipulation attack.

Notation:

• tc — lowerTick of the bin that contains the current price

• tp — lowerTick of the bin that contains the previous price

• tt w ap,c — lowerTick of the bin that contains the current TWAP

• tt w ap,p — lowerTick of the bin that contains the previous TWAP

• tbi n,c — lowerTick of the moving bin after the move

• tbi n,p — lowerTick of the moving bin before the move

The movement conditions are the same as Maverick v1:

• If tc == tp and tt w ap,c == tt w ap,p no bins move

• Only bins within one tick of price or exactly the previous TWAP will move;
other bins stay “stranded” until the price moves within one bin of their posi-
tion

• The target right-most tick whereRIGHTorBOTHbins will move to is targetr i g ht =
min{tc −1, tt w ap,c }

• All RIGHT and BOTH bins from min{tp − 1, tt w ap,p } to targetr i g ht − 1 will be
moved to targetr i g ht

• The target left-most tick where LEFT or BOTH bins will move to is targetle f t =
max{tc +1, tt w ap,c }

• All LEFT and BOTH bins from max{tp +1, tt w ap,p } down to targetl e f t +1 will be
moved left to targetle f t .

2.6 Programmable Pools

When creating a pool, users have an option to specify that the pool be programmable
so that only a single “accessor” address can call the pool’s write functions. This al-
lows for pools to be wrapped in manager contracts that provide custom modifica-
tions to a Maverick pool’s operation.

For instance, a protocol may have a need for a KYC-based pool. This is simple
with Maverick v2 pools. The process would be first to create a KYC wrapper contract
that allows for only a whitelisted set of users access to the wrapper functions. Sec-
ond, deploy a programmable Maverick v2 pool with that KYC wrapper contract as

Page 13 of 23

DRAFT
the accessor. Then, KYC users would interface with the wrapper contract, which
would check their permissions and then pass on actions to the programmable pool
if the KYC user has the proper credentials.

Programmable pools also have setFee function that lets the accessor address
modify the fee of the pool. This is a useful feature for protocols wanting to build
dynamic fee adjustment algorithms that optimize the LP fee performance.

Finally, other mechanisms like limit order, one-way LPing (only buying or sell-
ing), or even unforeseen novel mechanisms can be implemented as wrapper con-
tracts to provide new user flexibility.

3 Liquidity Management and Staking

MaverickV2Pool contracts support minting and removing liquidity to msg.sender,
to enable transferring liquidity positions and general management. Maverick v2 has
two paradigms available for LPs. Users can choose to create non-fungible tokens
that hold pool liquidity using the MaverickV2Position contract which has ERC-
721 NFT interfaces. Alternatively, users can hold pool liquidity using the Maverick-
V2BoostedPosition contract which makes liquidity positions fungible through an
ERC-20 interface where users can mint, transfer, and burn BP tokens that represent
a pro rata share in the BP’s aggregate liquidity.

By providing both ERC-20 and ERC-721 representations of pool liquidity, Mav-
erick v2 gives protocol developers the flexibility to leverage Maverick positions as a
fundamental liquidity building block.

3.1 Boosted Positions

A Boosted Position (BP) is a distribution of liquidity within a Maverick pool, consist-
ing of one or more bins and with a liquidity mode selected. Any user can create a BP
by cloning an existing liquidity distribution and adding liquidity. The key differences
between a BP and a normal liquidity position are as follows:

• BP tokens can be staked in a reward contract; token incentives can be permis-
sionlessly added to this contract and will be distributed over time to LPs in the
BP

• Any user can join a BP by adding liquidity in the correct ratio to the current
distribution; as an LP in the BP they will receive a share of any token incentives
sent to the BP’s reward contract

• An LP’s share of a BP is represented using an ERC-20 token specific to that BP;
this LP token must be staked into the BP’s reward contract to receive token
incentives

BPs represent a powerful tool for projects and other users to shape token liq-
uidity by incentivizing specific distributions within a pool. Instead of overspending
incentives to attract liquidity to every part of a pool, projects can use BPs to target
narrow areas using custom distributions and Maverick AMM’s movement modes.

Page 14 of 23

DRAFT
While the primary use case for BP ERC-20 tokens is staking into the reward con-

tract to receive token incentives, Maverick offers the option to leave these tokens
unstaked in the anticipation of other use-cases being discovered for them as a liq-
uidity primitive.

3.2 Boosted Positions Technical Details

MaverickV2BoostedPosition contracts are deployed from the
MaverickV2BoostedPositionFactory contract and are defined by an array of pool
binIds and bin LP balance ratios that determine the distribution of the liquidity in
the BP. A BP is only composed of one kind of bin at a time. BPs made up of ki nd = 0
bins can have up to 24 binIds, while BPs of any of the movement modes are lim-
ited to a single binId. BPs have an ERC-20 interface and tokens are minted for LPs
which represent their share of the BP. As swappers swap in the pool of the BP, fees
accumulate in the BP’s bin(s) and grow the amount of reserves that each BP LP is
entitled to.

To join a BP, an LP must add liquidity to a pool with the BP contract address as
the recipient such that the bin LP balance ratio of the pool liquidity matches the
ratios in the BP’s getRatios() function. At that point, the user needs to call mint
on the BP, and the BP will compare the bin LP balance it has stored to the current
BP LP balance. That comparison will show that the BP now has more bin LP balance
and the contract will mint BP LP tokens to the user.

3.3 Reward Contract Technical Details

BPs can be permissionlessly incentivized through the MaverickV2Reward contract.
As part of the contract deployment, the deploying user decides the BPstakingToken
as well as up to five reward tokens.

Incentivizers can permissionlessly add reward tokens of any of the five defined
kinds, which will then be disbursed to stakers. BP holders can stake their BP balance
in the reward contract by calling the stake() function which will transfer the BP
tokens from the user to the reward contract.

A rewards stake is not fungible and not transferable, but the reward contract does
have an ERC-20 interface for accounting for stake balances throughbalanceOfaddress
and totalSupply(). As time passes, each staker accumulates rewards in all of the
incentivized reward tokens, which can be redeemed by calling getReward().

3.3.1 Reward Accrual

Internally, the reward contract is tracking the following key quantities:

• rewardPerTokenStaked is the cumulative amount of reward token per unit
of stake minted. This cumulative is tracked per token and is updated every
time a user stakes or an incentivizer adds new incentives.

Page 15 of 23

DRAFT
• escrowedReward is the amount of unclaimed reward available. This is re-

ward that has been accrued to stakers but that they have yet to claim through
getReward().

• rewardRate is the amount of reward for a given token that is accrued to all
stakers every second.

• updatedAt is a timestamp in seconds that is the minimum of the reward finish
time and the last time the reward was updated by either a staker staking or an
incentive add.

• finishAt is a timestamp in seconds when the current rewards accrual stops
accruing.

At each update (either a stake or incentive add), the global reward state for each
reward token is updated by

1. computing the amount of rewards per token that have been accrued since the
last update

2. updating rewardPerTokenStaked by adding this newly accrued amount to it

3. updating escrowedReward by adding the product of the totalSupply and
the newly accrued rate to it.

On stake, the tracking for the staker is also updated. In particular, two values are
updated: 1) rewards[account] is updated with the amount of reward this staker
has accrued since their last update, which is computed by balanceOf(staker) ·
(rewardPerTokenStored−userRewardPerTokenPaid[account]) and 2)
rewardPerTokenStaked is checkpointed asuserRewardPerTokenPaid[account].
At any time, this same process can be used to compute the amount of reward a staker
has accrued.

3.3.2 Reward Incentive Boosting

In addition to specifying up to five reward tokens, the reward contract creator can
also specify a voting escrow token to correspond with as many of the reward to-
kens as they choose. By doing this, the reward disbursement for that reward token
changes in two ways: 1) the stakers have the option of staking their collected rewards
into the voting escrow contract to receive a reward boost and 2) the stakers can get
a further reward boost that is based on their voting power in the voting escrow con-
tract.

The formulas for computing the output reward amount for the staker are

r ew ar dout = r ew ar dmax ·boostst aki ng ·boostve , (48)

where

boostst aki ng = 0.25+ st akeDur ati on

f our Y ear s
·0.75 (49)

Page 16 of 23

DRAFT
boostve = 0.75+min

(
1,

pr oRat ave

pr oRat ast ake

)
·0.25 (50)

and

pr oRat ave = balanceOfve (st aker)

totalSupplyve
(51)

pr oRat ast aki ng = balanceOfst aki ng (st aker)

totalSupplyst aki ng
. (52)

This boosting process is completely optional: anyone can permissionlessly cre-
ate a reward contract and specify whether or not the reward tokens accrual will be
subject to the boosting mechanism or not. The advantage of this mechanism is that,
when coupled with the voting escrow factory, protocols can create their own voting
escrow token flywheel to encourage sticky protocol engagement.

3.3.3 Unboosted Token Disbursement

When a staker does not maximize their boost, the remaining tokens are tracked in a
variable called unboostedAmount. This amount will accumulate as time passes and
is no longer subject to disbursement to reward stakers. Instead, this set-aside token
amount will be pushed to the rewards mechanism in the ve token when any user
permissionlessly calls pushUnboostedToVe() on the reward contract. The details
of how this amount is disbursed to ve holder is detailed in Section 4.

3.3.4 Incentive Adding

Any user can permissionlessly add incentives to a reward contract in any of the re-
ward tokens with which that reward contract was initialized. When adding incen-
tives, the incentive adder chooses both the amount and duration of the incentive
disbursement period. However, the reward rate for each reward token is fixed to a
single number so there is no support for multiple disbursement periods to be run-
ning simultaneously.

Instead, when a user wishes to add incentives for a given reward token while
that reward token is already actively accruing, there are two possibilities for how the
duration and, thereby, the reward rate, are set. If the user is bringing more reward
tokens than are currently awaiting disbursement, then the duration specified by the
user is the new duration for all remaining rewards in the given reward token; that
is, the reward rate set by some previous incentive adder is overruled and this new
incentive adder is allowed to set a new rate.

If, instead, the new incentive adder brings fewer reward tokens than are awaiting
disbursement, then the rate remains unchanged such that the new reward amount
is “box-car” added to the end of the existing duration, thereby extending the reward
period at the previous reward rate.

Page 17 of 23

DRAFT
4 Voting Escrow Factory

Voting Escrow (ve) models are a common mechanism for 1) gathering community
feedback and 2) distributing protocol proceeds. One challenge is that it is hard for
new protocol teams to spin up the smart contract infrastructure and integrations
required to successfully create a ve flywheel that directs liquidity. Instead, protocols
are reduced to offering simple LP incentives to attract liquidity onto DEXs.

One advantage that protocols lose with simple incentives is that the incentives
that get emitted have no stickiness and do not require any long-term investment on
the part of the LP in the protocol. Conversely, ve staking aligns protocol and user
incentives by creating a staking period.

Maverick v2 addresses these pain points by creating a factory contract that any
user or protocol can permissionlessly use to create both 1) a ve contract for a given
ERC-20 token and 2) BPs that emit the reward token, but that–importantly–also in-
centivize BP LPs to stake these emissions in the ve contract. This allows protocols to
build an incentive-directing system where the stakers are given a boost if they stake
their rewards in the ve contract of the protocol.

Let us illustrate the process using a hypothetical ABC protocol that has an ABC
ERC-20 governance token. In Maverick v1, ABC protocol can choose to send ABC
tokens to a ABC-WETH BP. This will result in new liquidity being LPed into that BP,
providing liquidity for the token.

This process works fine and is effective, but Maverick v2 brings several new di-
mensions of flexibility through the ve factory and incentive directing system. In
Maverick v2, ABC protocol can improve their flywheel as follows:

• Use the Maverick ve Factory to create aveABC token. This is a non-transferable
ERC-20-Votes compatible token that holds stakedABC tokens. The voting power
of a veABC holder depends on both 1) how long they have staked their ABC and
2) how much ABC they staked.

• ABC protocol can now create Maverick BP reward contracts that have two im-
provements over v1:

1. ABC protocol can utilize the boost mechanisms described in Section 3.3.2
for the BP so that users with more veABC are entitled to more ABC emis-
sions when they LP.

2. ABC protocol can configure the BP to give a boost to ABC emissions that
are immediately staked in as veABC.

• Instead of operating as an external user of Maverick BPs, ABC protocol now
takes on the role of matcher in their incentive-directing system. ABC protocol
can manage the matching and vote-matching budgets for each epoch in the ve
cycle and choose whether to use veABC voting to add a further boost to their
BPs. If the vote-matching budget is left empty, there will no boost to emissions
based on veABC voting, essentially turning off this part of the flywheel. For a
detailed explanation of the matching and vote-matching system, see Section
4.1.4 below.

Page 18 of 23

DRAFT
• veABC can also be used in the ABC protocol’s governance infrastructure to

gather community feedback and direct rewards.

The result is that Maverick has democratized the liquidity directing flexibility that
used to only be available to DEXs. In this sense, Maverick v2 acts as a sort of DeFi
liquidity operating system and becomes a fundamental primitive that protocols on
new chains can use to gather users and shape their liquidity.

4.1 Incentive Directing Through Matching

The MaverickV2IncentiveMatcher contract provides a mechanism for protocols
to match and boost incentives in a reward contract based on ve-user voting. An
incentive matcher contract can be permissionlessly deployed for each ve token cre-
ated. It provides an opinionated framework that allows any protocol to easily pro-
vide matching and vote-based incentives to a given BP and its reward contract.

4.1.1 Types of Incentives

The incentive-directing system that the matcher contract implements incorporates
three types of incentives:

• External incentives: token incentives added directly to a BP’s reward contract
at the start of an epoch, which form the basis for calculating matching with
other incentives; to qualify, these incentives must be in the form of the ve sys-
tem’s base token

• Matching incentives: token incentives added to the BP’s reward contract, in-
tended as a straight match to external incentives received by that BP

• Vote-matched incentives: token incentives added to the BP’s reward contract
as a function of external incentives and ve vote received by that BP in this
epoch

Matching and vote-matched incentives are collectively referred to as “emissions” in
this whitepaper.

4.1.2 Users

Three parties that interact with the incentive matcher contract:

• BP Incentive Adders: a protocol or liquidity shaper who adds incentives to a
reward contract

• Matching Budget Adders: a protocol who wishes to match the incentives that
the BP Incentive Adders have added

• Voters: ve token holders who can vote to direct more of the matching budget
to given BPs through their reward contracts

These users interact with the matching contract on an epoch-based cadence.

Page 19 of 23

DRAFT
4.1.3 Epoch Cadence

Each epoch consists of three stages:

1. External incentives and veMAV voting (14 days): during this period, BP In-
centive Adders can add MAV incentives to any BP to qualify for matching and
vote-matched incentives from emissions; voters with a veMAV balance can
vote for BPs to direct vote-matched incentives to them

2. Veto period (2 days): during this period, any wallet providing matching bud-
get for this epoch can veto a BP from receiving that matcher’s portion of the
matching/vote-matched funds; this is designed to prevent bad actors from
creating BPs using non-transferable tokens and rewarding themselves with
emissions. The veto period starts directly after the voting period ends.

3. Emissions period (variable number of days): at the start of this period, match-
ing and vote-matched funds are sent to the reward contract just like exter-
nal incentives and are disbursed to the reward contract stakers as described
in Section 3.3. This period is initiated by any user permissionlessly calling
distribute() on the matcher contract.

Each new epoch begins as the first stage of the previous epoch ends; e.g., stage 1 of
epoch 2 begins when stage 1 of epoch 1 ends.

4.1.4 Calculating Incentives

For each epoch, the matched contract tracks two budgets: a matching budget and a
vote-matched budget. These will be used as the basis for calculating the respective
types of incentives to be emitted to each BP.

The matching budget forms the basis of matching incentives. At the end of stage
1 of an epoch, the total external incentives received by any given BP is calculated,
and used as the basis of computing its matching incentives. So long as the total
external incentives received in the epoch does not exceed the total matching budget,
the reward contract for each BP will receive a 1:1 match to external incentives from
the matching budget.

For example, if a rewards contract received 100 MAV of external incentives in an
epoch and the total matching budget of MAV on the contract was not exceeded, 100
MAV of matching incentives will be sent to that BP’s reward contract at the start of
stage 3 of the epoch. If the total external incentives received in the epoch exceeds
the total matching budget, each BP with external incentives will receive matching
incentives on a pro rata basis.

Mathematically, if the i th reward contract received i ncenti vesr aw,i , then the
matching incentive amount is

i ncenti vematch,i =
{

i ncenti ver aw,i
∑

k i nceti vesr aw,k ≤ bud g etmatch
i ncenti ver aw,i∑
k i nceti vesr aw,k

∑
k i nceti vesr aw,k > bud g etmatch

. (53)

Page 20 of 23

DRAFT
The vote-matched budget forms the basis of vote-matched incentives. These

incentives for the i th reward contract are calculated at the end of stage 1 of an epoch
using the formula

i ncenti vevote,i = votei∑
k votek

i ncenti ver aw,i∑
k i nceti vesr aw,k

bud g etvote . (54)

Example Assume an epoch with a matching budget of 1,000 MAV and a vote-matched
budget of 2,000 MAV. In this hypothetical epoch only 600 “raw” incentives have been
added to two active reward contracts. The results is

• Reward contract A receives 100 MAV in external incentives, and 50% of the
veMAV vote. The match amount is 100 MAV, and the vote match amount is
1/6∗1/2∗2000 = 166.66.

• Reward contract B receives 500 MAV in external incentives, and 25% of the
veMAV vote. The match amount is 500 MAV, and the vote match amount is
5/6∗1/4∗2000 = 416.67.

4.1.5 Incentive Matcher Technical Details

Voting. Voting in each epoch is tracked by the voter’s ve delegate balance at the
start of the ve epoch. Specifically, the matcher contract calls getPastVotes(voter)
on the ve contract and tracks this as the user’s vote. A user can vote only once per
epoch.

Vetoing. There is a two-day period after the voting period when incentive match
budget providers can choose to veto a given reward contract. The vetoing user only
has the power to veto their portion of the match budget.

Distributing Matched Rewards. After the veto period ends, any user can permis-
sionlessly distribute the match incentives to one or more reward contracts. Through
that process, the matcher contract adds the incentives to the reward contract as if
it was any other incentive. As described in Section 3.3.4, when new incentives are
added, the resulting duration depends on the amount of incentives yet to be dis-
bursed and the new amount of incentives being added. The matcher contract adds
incentives with a duration of 14 days specified, but, depending on the existing in-
centives, the actual disbursement time of the matched incentive will vary.

Rolling Over Excess Budget. At the end of an epoch, there may be unused match
budget and it is likely that there will be unused vote-match budget. The matcher
contract provides the rolloverExcessBudget() function that budget providers
can call to move any unused budget from one epoch to another. This function
should only be called after all matches from the epoch have been distributed. Any
undistributed incentives from a given epoch will cause the rollover function to un-
derestimate the rollover amount and will lock this excess amount in the contract
with no mechanism for retrieval.

Page 21 of 23

DRAFT
4.2 Voting Escrow Technical Details

The ve contract created by the ve factory has the following features:

• Exponential-Based Voting Power - Unlike the Curve or Velodrome ve systems
where voting power decreases over time, the Maverick v2 ve vote tracking
leaves the voting power unchanged for a given stake. Instead, an exponential
function is used to give more recent and longer-duration voters more voting
power. The result is a more robust voting system that is easier to integrate with
other smart contracts.

The voting power, v a given user get for staking x tokens is

v = x ·1.5
d+t−startingTimestamp

oneY ear , (55)

where startingTimestamp is the timestamp when the ve contract was de-
ployed, and the user stakes for duration d at time t .

• ERC20Votes-Based Delegation - Any ve holder can delegate their vote to any
address. They can also unilaterally change delegation at any time to delegate
back to themselves or another party.

• Past Voting-Power Tracking - The ve contract exposes getPastVotes and
getPastTotalSupply functions, which make it compatible with smart-contract-
based on-chain governance systems. The past timepoints are specified by
timestamp instead of blocknumber, making this contract versatile across chains
that may have variable block times.

• Past Balance Tracking - The ve contract has a getPastBalanceOf function
that allows for historical retrieval of a user’s balance as separate from their
voting power. This allows for external contracts to reward users based on their
balance at a given timestamp. ERC20Votes only track past voting power, which
is impacted by vote delegation.

• Time-Point Based Reward Disbursement - Users can permissionlessly create
an “incentive batch,” which is a bounty of tokens paid to ve holders pro rata
of their balance at a given timepoint. Incentive batch creators specify 1) the
token of the incentive, 2) the amount, and 3) if the token is the base token of
the ve contract, the duration that the token must be staked. This creates a very
flexible system to reward ve holders in arbitrary tokens.

• Stake Management - Individual ve stakes can be managed separately, making
it possible to have a ladder of stakes that end at different times. The ve contract
also exposes merge and extend functions to give users a flexible set of tools to
manage their stakes.

• Third-Party Management of Stakes - The ve contract has a mechanism through
approveExtender to allow stakers to provide access to a third party who can
manage their stake extensions.

Page 22 of 23

DRAFT
• Backward Compatibility with Maverick v1 veMav - On chains where veMav is

already deployed, the new v2 veMav contract will have a mechanism to sync
the legacyVeMav balance with the new contract. Any caller can permission-
lessly synchronize the voting power across the two contracts with a call to the
sync function.

Page 23 of 23

