
A protocol for private, permanent
and composable storage vaults

By Richard Caetano and Weronika Kolodziejak

www.akord.com | @AkordTeam | Join the community on Discord

A TECHNICAL LITEPAPER | VERSION 0.1 | SEPT 2022

http://www.akord.com
https://twitter.com/AkordTeam
https://discord.com/invite/g4VXfauK5s

Introduction
 Web1–3

 Data ownership

Web3 storage vaults
 Design overview

 Keys

 Transactions

 Members

 Nodes

Building a vault
 Initialise the vault

 Adding/revoking membership

 Contributing data

 Dynamic access control

 Custom commands with nodes

 Quantum resistance

Conclusion

 03
 03

 03

 04
 04

 04

 04

 04

 05

 05
 05

 05

 05

 06

 06

 06

 07

Contents

Introduction

Since the early 2010s, cloud storage has been the
predominant means of storing user data such as
profiles, emails, files and messages.

It has proven to be inexpensive, efficient and easy to
integrate across a broad range of applications running
in software-as-a-service, enterprise and government
infrastructure.

The cloud is able to quickly deliver data, real time, to a
range of devices – desktop, mobile, even your watch.
However, as we’ve seen, centralised cloud services
pose significant risks to the individual:

• Privacy: most software-as-a-service providers, at
a minimum, have a backdoor to customer data at
rest, in transit or when processed.

• Censorship: SaaS providers can revoke access to
your data, especially if forced to by a government
or legal judgement.

• Lacking consent: your data is often bought and
sold, analysed or traded, without your consent
or compensation.

• Surveillance: nefarious actors, governments and
cyber criminals can exploit customers by hacking
data storage providers.

Web1–3
To quickly review how we got to web3.

Web1: read–only
The web as we used it in the beginning, static and
searchable. Users had the right to connect and
browse. In other words, Web1 was ‘read only’.

Web2: read–write
The web when social media scaled to billions of
people. Users generated content with their right to
post, publish, like and share. In other words, Web2
was ‘read and write’.

Web3: read–write–own
The web as developed today where blockchains form
the internet layer of value. Data, money and contracts
are secured and integrated by decentralised apps
(dApps), which are user owned. In other words, Web3
is ‘read, write and own’.

Data ownership
Core to Web3 is the right for users to own their data
and have complete control of who can access it. This
fact alone makes us re-consider the architecture we
use for building distributed applications, or dApps.

Web2 applications, running as a SaaS product,
assume customer data is stored behind the firewall
in order to process and deliver their application. This
architecture requires the SaaS provider to have full
access to the user’s data.

However, dApps require an architecture where the
application never stores user data, rather the dApp
requests access to it from the client’s browser.

By relying on end-to-end encryption and locally
running dApps, the user can have much greater
control over their data – unlocking user-controlled
data ownership.

Akord Protocol Litepaper Version 0.1 03

Web3 storage vaults

In this paper we present a protocol that enables
builders to deploy user-controlled, web3 storage
vaults. Facilitating data ownership, they have the
following functionality and properties.

• Privacy secured by end-to-end encryption.

• Consent: access controlled by the user’s consent.

• ZKP: containers for verifiable claims and zero
knowledge proofs.

• Composable and extendable protocol, enabling
custom extensions.

• On-chain permanent storage for files and folders.

• File versioning and auditing.

• Messaging and collaboration.

As an abstract protocol, vaults require that all
members are guaranteed access to consensus.
Thus, the protocol can be best implemented over a
blockchain network, such as Arweave or Filecoin.

Design overview
Vaults. Private, permanent and composable storage
units. Accessed directly from the browser, vaults
require client-side encryption. Keys used to encrypt
and sign are protected by the user’s wallet.

Members. The vault includes one or more members
who can read and/or write data in the vault.

Nodes. Data in the vault is organised by nodes. Nodes
are abstract pointers to data and can be used to
construct a hierarchy or graph of data.

Keys
Associated with all vaults are a set of keys held by the
members. Below is an overview of the keys used to
build a vault.

User keys. Two pairs of keys coming from the user’s
wallet:

• encryption private & public key

• signing private & public key.

Vault keys. A public & private key pair generated by
the vault owner upon creation of the vault. This key
can be rotated.

Access key. A symmetric key used to encrypt the
data (files, memos, filenames, user’s info).

Public address. Each member is identified by their
public address, a special hash that is generated from
the member’s public key.

public key public addresshashing function

We cannot extract public keys from the public
address. Therefore, all parties involved with the vault
must share the public key between themselves to use
the protocol.

Transactions
Vaults are built as a series of transactions stored on-
chain as a transaction log. Every state change to the
vault is encoded as a transaction.

We’ll define the required transaction set as follows.

• vault:create

• vault:update

• member:accept

• member:revoke

• member:change-role

• node:create

• node:update

• node:delete

With this base set of commands, we can construct
a dynamic vault that can accept contributions over
time. These commands can be extended or replaced
by commands designed with specific requirements.

Members
Vaults can serve one or more members. Members can
be assigned one of three roles:

• Owners can control access, can archive and can
transfer the ownership of the vault.

• Contributors can publish new documents, assets,
etc to the vault.

• Viewers can access the vault, only to view content.

Vault keys are rotated when a member leaves or is
removed, ensuring that access is revoked. Users
only have permanent access to the data they could

Akord Protocol Litepaper Version 0.1 04

Adding/revoking membership
Adding new members to the vault requires a key
exchange to validate the member.

1. Owner verifies the validity of the new member’s
identity and associated public key.

2. The vault owner decrypts the vault private key
with their encryption private key.

3. The owner encrypts the vault private key with the
invitee’s encryption public key.

tx:init tx:member-add

Contributing data
To respect the privacy rights of the vault members,
data must be encrypted at rest, during transit and
when processed. Therefore, encryption is performed
by the client to ensure end-to-end encryption.

Each member in the vault has a public key, and
subsequent public address, which they can use to
exchange messages and validate signatures.

Vault key
A vault key is used to encrypt/decrypt the data,
values, keys within a vault. When added to a vault,
members share an encrypted copy of a vault key.

Members can then use the vault key to exchange data
with other members in the vault.

1. Alice and Bob are both members of a vault.

2. Alice wants to share a file within the vault.

3. Alice generates a unique access key.

Building a vault

Next we will take a look at the steps to create and
interact with a vault. Each step will correspond to
an abstract command that is implemented as a
transaction. The transaction log can then be used as
provenance of the origin and state of the vault.

Initialise the vault
All vaults begin with an initial transaction to
encapsulate the signatures and/or proof of the
following steps.

1. The vault owner generates a vault key pair
(public & private key).

2. The private key is encrypted with the owner’s
encryption public key.

3. Transaction is submitted encapsulating the
encrypted vault keys and public address of
the owner.

The resulting transaction log would contain:

Nodes can point to themselves to form hierarchies
such as files and folders.

parent

child

They can provide revision control for documents and/
or other files.

file v1 file v2 file v3

Akord Protocol Litepaper Version 0.1 05

see while a member of the vault, and not to any data
added after they are no longer a member.

Nodes
Within the vault, nodes are used as pointers to data,
files, documents, etc.

node data

Revoking access to encrypted data is often not
possible, especially when data is stored on-chain,
because an encryption key cannot be unseen.

However, we can rotate the encryption key to restrict
access to future data sets.

1. Owner generates a new vault key pair.

2. The new vault private key is encrypted for all
active members.

3. All data exchanged in the vault are henceforth
encrypted with the new public key.

tx:init tx:member-add tx:member-revoke

tx1:vault-create

4. Alice encrypts file with the newly generated
access key.

5. Alice encrypts the access key with the vault
public key.

6. the encrypted file and encrypted access key are
stored.

tx:init

tx:member-add

tx:member-revoke

tx:node-create

Later, Bob can access the file.

7. Bob decrypts the vault private key with their
encryption private key

8. Bob decrypts the access key with the vault
private key

9. Bob decrypts the file with the access key

Dynamic access control
If a vault contributor attempts to include an invalid
transaction, the clients can simply ignore the
transaction and the vault owner can revoke access.

With the client accepting/rejecting transactions based
on the vault’s rule set, a decentralised consensus can
be formed with other clients. This consensus forms
the ‘single source of truth’ for the vault.

tx:member-add

tx:node-create-1

tx:node-create-2

tx:member-revoke

In this set of transactions, the member added and
removed would only have access to the first node.

Custom commands with nodes
The vault can be constructed with an abstract pointer
called a node.

Nodes function as pointers because they can
reference:

In this chain we show a folder was created and a file
uploaded to it. Finally, a second revision of the file
was uploaded, resulting in a stack with two versions.

Quantum resistance
With a hypothetical quantum computer, it is possible
to break elliptic curve encryption using the Shor’s
Algorithm. Thus the threat is a quantum computer
advanced enough to execute this attack.

To mitigate this issue when working with permanent
blockchains, it is recommended to mask public keys
using a hash function to generate a public address
when using elliptic curve encryption. It is extremely
difficult to extract a public key from a public address
and without the public key, it is not possible for a
quantum computer to break the encryption.

Akord Protocol Litepaper Version 0.1 06

• an external, public or private, data set, image or file;

• another node to form a hierarchy, such as a folder
system;

• a node that is a previous version of itself, enabling
file versioning;

• zero knowledge proofs, enabling privacy
preserving verifiable claims;

• contracts, tokens and NFTs, enabling collections,
ownership, and more.

To implement a file system, you can extend the
protocol with the following commands to construct a
‘file stack’.

• stack-create – storing the file hash, timestamp,
version.

• stack-upload – storing a new file hash,
timestamp, and incremented version.

• folder-create – create a new node to function
as a folder.

• stack-move – update the file to list under the
existing folder.

tx:folder-create

tx:stack-create

tx:stack-move

tx:stack-upload

Conclusion

Decentralised and permanent storage is central to
Web3. It unlocks dApps, user ownership of data,
censorship resistant protocols and more.

However, for dApps, as well as SaaS and enterprise,
to fully adopt a paradigm where user ownership of
data is central, application developers will need to
rethink how they access user-owned data.

In our paper, we presented the concept of private
web3 storage vaults, storage units that can exist on
permanent storage blockchains like Arweave.

Vaults are composable and can be customised for
any application’s data needs. Vaults can share data
between applications, contain user account and
profile data, or function as a data escrow device.

Akord Protocol Litepaper Version 0.1 07

Another approach is to use a more quantum secure
algorithm, such as Lattice-based cryptography.

Web3 will bring a long tail of uses and applications to
web3 vaults. Delivering the proper infrastructure and
cryptography will be key to any implementation.

