

Security Assessment of Friktion Portfolio

Management Smart Contracts

Findings and Recommendations Report Presented to:

Friktion Labs, Inc.

May 31, 2022

Version: 2.0

Presented by:

Kudelski Security, Inc.

5090 North 40th Street, Suite 450

Phoenix, Arizona 85018

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 2 of 23

TABLE OF CONTENTS

TABLE OF CONTENTS..2

LIST OF FIGURES ...3

LIST OF TABLES ...3

EXECUTIVE SUMMARY ..4

Overview ...4

Key Findings ...4

Scope and Rules of Engagement ...5

TECHNICAL ANALYSIS & FINDINGS ...6

Findings ...7

Technical Analysis ..8

Authorization ..8

Conclusion ...8

Technical Findings ..9

General Observations ...9

Match statement error .. 10

No check of authority on whitelist token mint ... 11

No check on oracle account ... 11

Debug message vs. code discrepancy .. 12

Duplicate checks .. 13

Issue with a debug print ... 14

Misleading comments ... 14

Use UncheckedAccount over AccountInfo ... 15

Use of access control for custom errors ... 16

Use of init_if_needed without need .. 17

Using ///CHECK without any explanation to silence anchor build .. 18

METHODOLOGY .. 19

Kickoff .. 19

Ramp-up .. 19

Review ... 19

Code Safety ... 20

Technical Specification Matching ... 20

Reporting .. 20

Verify .. 21

Additional Note ... 21

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 3 of 23

The Classification of identified problems and vulnerabilities ... 21

Critical – vulnerability that will lead to loss of protected assets ... 21

High - A vulnerability that can lead to loss of protected assets .. 21

Medium - a vulnerability that hampers the uptime of the system or can lead to other problems 22

Low - Problems that have a security impact but does not directly impact the protected assets 22

Informational ... 22

Tools .. 23

RustSec.org .. 23

LIST OF FIGURES

Figure 1: Findings by Severity ..6

Figure 42: Methodology Flow .. 19

LIST OF TABLES

Table 2: Findings Overview ..7

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 4 of 23

EXECUTIVE SUMMARY

Overview

Friktion Labs, Inc. engaged Kudelski Security to perform a Security Assessment of the Friktion Portfolio
Management Smart Contracts which aim to generate income for users based on options trading on various
assets.

The assessment was conducted remotely by the Kudelski Security Team and our partner BTBlock. Testing took
place on March 21 - April 14, 2022, and focused on the following objectives:

• Provide the customer with an assessment of their overall security posture and any risks that were
discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security measures that
are in place.

• To identify potential issues and include improvement recommendations based on the result of our tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed descriptions of
the discovered vulnerabilities, steps the Kudelski Security Teams took to identify and validate each issue, as well
as any applicable recommendations for remediation.

Key Findings

No findings of critical or high severity were found during the review.

During the test, the following positive observations were noted regarding the scope of the engagement:

• The team was very supportive and open to discussing the design choices made

Based on account relationship graph analysis and formal verification we conclude that the reviewed code
implements the documented functionality.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 5 of 23

Scope and Rules of Engagement

Kudelski performed a Security Assessment of the Friktion Portfolio Management Smart Contracts. The following
table documents the targets in scope for the engagement. No additional systems or resources were in scope for
this assessment.

The source code was supplied through a private repository at https://github.com/Friktion-Labs/volt with the commit
hash 29335185457a912a2cda0c403a5cac08f777bb60. A re-review was performed on May 19, 2022, with the
commit hash 18cc38ca136986ff08aa50b84990bfe52b24025e.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 6 of 23

TECHNICAL ANALYSIS & FINDINGS

During the Security Assessment of the Friktion Portfolio Management Smart Contracts, we discovered:

• 3 findings with LOW severity rating.

• 8 findings with INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 7 of 23

Findings

The Findings section provides detailed information on each of the findings, including methods of discovery,

explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Severity Description

KS-FRIKTION-01 Low Match statement error

KS-FRIKTION-02 Low No check of authority on whitelist token mint

KS-FRIKTION-03 Low No check on oracle account

KS-FRIKTION-04 Informational Debug message vs. code discrepancy

KS-FRIKTION-05 Informational Duplicate checks

KS-FRIKTION-06 Informational Issue with a debug print

KS-FRIKTION-07 Informational Misleading comments

KS-FRIKTION-08 Informational Use UncheckedAccount over AccountInfo

KS-FRIKTION-09 Informational Use of access control for custom errors

KS-FRIKTION-10 Informational Use of init_if_needed without need

KS-FRIKTION-11 Informational Using ///CHECK without any explanation to silence anchor build

Table 1: Findings Overview

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 8 of 23

Technical Analysis

The source code has been manually validated to the extent that the state of the repository allowed. The validation

includes confirming that the code correctly implements the intended functionality.

Further investigations concluded that no critical risks were identified for the application, including:

• No potential panics were detected

• No potential errors regarding wraps/unwraps, expect and wildcards

• No internal unintentional unsafe references

Authorization

The review used relationship graphs to show the relations between account input passed to the instructions of the
program. The relations are used to verify if the authorization is sufficient for invoking each instruction. The graphs
show if any unreferenced accounts exist. Accounts that are not referred to by trusted accounts can be replaced by
any account of an attacker's choosing and thus pose a security risk.

In particular, the graphs will show if signing accounts are referred to. If a signing account is not referred to then
any account can be used to sign the transaction causing insufficient authorization.

No insufficient authorization was found based on the analyzes of the relationship graphs. For details, see section
Error! Reference source not found. starting on page Error! Bookmark not defined..

Conclusion

Based on account relationship graph analysis and formal verification we conclude that the code implements the
documented functionality to the extent of the reviewed code.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 9 of 23

Technical Findings

General Observations

During code assessment, it was noted that the Rust code is well written and the use of checked arithmetic
operations to protect from overflow/underflow operations combined with vipers unwrap_int shows

commitment to writing secure programs.

The code documentation is okay, however doc comments required by anchor were mostly just silenced
instead of explaining why account checks are not required. There are also a lot of copy and paste comments that
have not been properly modified to reflect the actual code. Examples are false statements about what token is
burned and whether a function can run before or after expiry. There are quite a few more instances of such
comment related issues. It may also be a good idea to refrain from the use of swear words in comments even if
used in jest.

The use of the anchor framework with its inbuilt account verification functionality is a great foundation for
this Solana project. The programs strongly rely on anchors inbuilt validation and access restriction macros.
Though many of the checks have been duplicated, a few of them appear 3 times. This is due to checks being
implemented in account macros, access control functions as well as the handler function. While Solana, unlike
Ethereum, does not charge gas fees based on each instruction, the problem with this is maintainability and
readability of the code. Many of the access control functions are complete duplicates of checks already done in
the account macros, thus the whole access control function could be removed. Custom errors can also be used in
account macros.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 10 of 23

Match statement error

Finding ID: KS-FRIKTION-01
Severity: Low
Status: Remediated

Description

A defective match statement that always executes the first branch. This will lead to miscalculated fees for the
Inertia protocol.

Proof of Issue

File name: programs/volt/src/helpers.rs
Line number: 542

match self.options_protocol_name {

 Soloptions => soloptions::fees::calculate_mint_fee(ul_amount).unwrap(),

 Inertia => inertia::fees::mint_fee_amount(ul_amount),

}

This match statement does not match on Types, it assigns the Enum to the variable called Soloptions and

always executes the first branch.

Severity and Impact Summary

When calculating the fee for OptionsProtocol::Inertia it will instead return the fee for

OptionsProtocol::Soloptions. Therefore, the wrong fee is always charged when the Inertia protocol is

used.

Recommendation

Match on the actual Type.

match self.options_protocol_name {

 OptionsProtocol::Soloptions =>

soloptions::fees::calculate_mint_fee(ul_amount).unwrap(),

 OptionsProtocol::Inertia => inertia::fees::mint_fee_amount(ul_amount),

}

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 11 of 23

No check of authority on whitelist token mint

Finding ID: KS-FRIKTION-02
Severity: Low
Status: Remediated

Description

The authority over the provided mint account is not checked. Whitelist tokens grant access and should therefore
be issued by a trusted party. While this is an admin function, it is still a good idea to verify the mint authority to
prevent any misuse.

Proof of Issue

File name: programs/volt/src/ixs/dov/initialize.rs
Line number: 121

pub whitelist_token_mint: Box<Account<'info, Mint>>,

Severity and Impact Summary

This is an “admin function” creating a new volt vault. For the whitelist_token_mint account it is established

that it is a Mint account and therefore owned by the token program. But it is not checked who is authorized to

mint those whitelist tokens. The admin could pass in any authority – with ill intention or by mistake.

Recommendation

It is recommended to restrict the authority of the mint account even though the person executing this function is
trusted.

No check on oracle account

Finding ID: KS-FRIKTION-03
Severity: Low
Status: Remediated

Description

There is no account check for the oracle_ai account passed in inertia::new_contract().

Proof of Issue

File name: programs/inertia/src/contexts.rs
Line number: 20

/// CHECK: difficult to authenticate which oracle protocol owns this pubkey through

anchor macros.

pub oracle_ai: AccountInfo<'info>,

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 12 of 23

Severity and Impact Summary

This is an “admin function” creating a new options contract and the account key given here is stored for future
reference. Other program functions compare the key to the account given & stored here. Therefore, the account
cannot be changed later, and account validation has to be done here. It may be prudent to make sure that this
account is indeed an oracle account, that it is owned by the relevant program.
If, by mistake or intent, some other account is passed in, the option_settle() function could become un-

executable as it attempts to de-serialize this account. This would, in turn, also make the option_exercise()

and option_redeem() functions inaccessible. Account de-serialization is attempted in

AggregatorAccountData::new() and requires a discriminator to match.

let temp_decimal: f64 = AggregatorAccountData::new(oracle_ai)?

 .get_result()?

 .try_into()

 .unwrap();

Recommendation

It is recommended to check the ownership of this account using anchors Account type or owner account macro

and/or attempt to de-serialize this account in new_contract() to make sure that it won’t fail later when

option_settle() is invoked.

References

https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html
https://docs.switchboard.xyz/program#mainnet-beta

Debug message vs. code discrepancy

Finding ID: KS-FRIKTION-04
Severity: Informational
Status: Remediated

Description

Debug message states the required amount should be greater than 0. Code checks it is 0.

Proof of Issue

File name: programs/volt/src/ixs/dov/settle_permissioned_market_premium_funds.rs
Line number: 97

msg!("checking require amount > 0");

require!(

 ctx.accounts.permissioned_market_premium_pool.amount == 0,

 InvalidPermissionedMarketPremiumMint

)

https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html
https://docs.switchboard.xyz/program%23mainnet-beta

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 13 of 23

Severity and Impact Summary

No security impact.

Recommendation

It could be a good idea to keep the debug messages coherent with the actual code.

Duplicate checks

Finding ID: KS-FRIKTION-05
Severity: Informational
Status: Open

Description

There are about 100 duplicate checks. These checks are often implemented on the account and again in the
access control function.

Proof of Issue

File name: programs/volt/src/ixs/dov/rebalance_swap_premium.rs
Line number: 43

#[account(mut, address=volt_vault.vault_authority)]

/// CHECK: skip

pub vault_authority: AccountInfo<'info>,

And: File name: programs/volt/src/account_validators.rs
Line number: 382

if self.vault_authority.key() != self.volt_vault.vault_authority {

 return Err(VaultAuthorityDoesNotMatch.into());

}

Severity and Impact Summary

The unnecessary duplication of checks bloats the code and makes it more difficult to understand. Often all the
checks in the access control function are duplicates, thus the whole access control function could be removed.

Recommendation

Keep the code concise, adding an access control function should only be done if the checks cannot be expressed
in the account macros.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 14 of 23

Issue with a debug print

Finding ID: KS-FRIKTION-06
Severity: Informational
Status: Remediated

Description

The debug print will print the same accounts for before and after.

Proof of Issue

File name: programs/volt/src/ixs/whitelist/remove_whitelist.rs
Line number: 28

msg!("addresses before: {:?}", ctx.accounts.whitelist.addresses);

let key_to_remove = ctx.accounts.account_to_remove.key();

msg!("addresses after: {:?}", ctx.accounts.whitelist.addresses);

ctx.accounts

 .whitelist

 .addresses

 .retain(|x| *x != key_to_remove);

Severity and Impact Summary

The order of the debug prints is wrong.

Recommendation

Move the print function beneath the call to retain().

Misleading comments

Finding ID: KS-FRIKTION-07
Severity: Informational
Status: Remediated

Description

In close_position() there is a misleading comment stating that positions can only be closed after expiry,

while the code implements a check to verify that the contract is not yet expired. And there are two burn function
calls: one to burn option tokens and one for writer tokens. However, both functions have a comment that states
that writer tokens are burned. Presumably that comment is a copy and paste.

Proof of Issue

File name: programs/inertia/src/lib.rs
Line number: 187

// dont exercise before expiry

require!(

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 15 of 23

 (ctx.accounts.clock.unix_timestamp as u64) < contract.expiry_ts,

 TooLateToClosePosition

);

File name: programs/inertia/src/lib.rs
Line number: 237

// burn writer tokens

token::burn(

 CpiContext::new(

 ctx.accounts.token_program.to_account_info(),

 token::Burn {

 mint: ctx.accounts.option_mint.to_account_info(),

 ...

Severity and Impact Summary

There are misleading comments throughout the project which may briefly confuse future maintainers of the
project.

Recommendation

It would be good to have accurate comments.

Use UncheckedAccount over AccountInfo

Finding ID: KS-FRIKTION-08
Severity: Informational
Status: Open

Description

AccountInfo is always used instead of UncheckedAccount

Proof of Issue

File name: initialize.rs
Line number: 27

/// CHECK: skip

admin_key: AccountInfo<'info>,

And many other places.

Severity and Impact Summary

The code would be more in line with best practices if it were to follow the guidelines set by Anchor.

Recommendation

Anchor recommends the use of UncheckedAccount over AccountInfo to emphasize the lack of checks made.

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 16 of 23

References

https://docs.rs/anchor-lang/latest/anchor_lang/accounts/account_info/index.html

Use of access control for custom errors

Finding ID: KS-FRIKTION-09
Severity: Informational
Status: Open

Description

The use of custom error messages is great, but it is not necessary to use access control functions for this
purpose.

Proof of Issue

File name: programs/volt/src/account_validators.rs
Line number: 448

// Note: This is an unncessary check as the signer seeds to mint the vault tokens

would

// fail, but this procvides a nice custom error message

if self.vault_authority.key() != self.volt_vault.vault_authority {

 return Err(VaultAuthorityDoesNotMatch.into());

}

Severity and Impact Summary

Custom errors can be added to the account macro-based checks, thus making the code more concise:

#[account(address = <expr> @ <custom_error>)]

Recommendation

Keep the code concise by adding the custom errors to the account macro-based checks.

References

https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html

https://docs.rs/anchor-lang/latest/anchor_lang/accounts/account_info/index.html
https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 17 of 23

Use of init_if_needed without need

Finding ID: KS-FRIKTION-10
Severity: Informational
Status: Remediated

Description

The use of init_if_needed is discouraged by anchor and was therefore put behind a feature flag. While

init_if_needed is generally not that much of an issue with PDAs, it may be better to avoid its use if not

required.

Proof of Issue

File name: programs/volt/src/ixs/template/cancel_pending_withdrawal.rs
Line number: 35

#[account(init_if_needed,

 seeds = [volt_vault.key().as_ref(), authority.key().as_ref(),

b"pendingWithdrawal"],

 bump,

 payer = authority)]

pub pending_withdrawal_info: Box<Account<'info, PendingWithdrawal>>,

Severity and Impact Summary

There is no security issue with the code as the account is a PDA and does have an is initialized check.

However, in this two-step process, a withdrawal has to be initialized before it could be cancelled. This means
there is no need to initialize the account in the cancel function.

Line number: 57

// Validate that pending_withdrawal_info is initialized

require!(

 ctx.accounts.pending_withdrawal_info.initialized,

 PendingWithdrawalInfoNotInitialized

);

Recommendation

Avoid the use of init_if_needed if not actually required. Another can be found in

cancel_pending_deposit for the pending_deposit_info acccount.

Since the initialize and initialize_entropy functions setup the extra_volt_data account, it may be

worth checking if the init_if_needed is (still) relevant for withdraw, deposit_dao, attach_whitelist.

References

https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html#normal-constraints

https://docs.rs/anchor-lang/latest/anchor_lang/derive.Accounts.html%23normal-constraints

Friktion Labs, Inc.

Security Assessment of Friktion Portfolio Management Smart Contracts

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0 | 05/31/22

 Page 18 of 23

Using ///CHECK without any explanation to silence anchor build

Finding ID: KS-FRIKTION-11
Severity: Informational
Status: Remediated

Description

Anchor requires that the use of unchecked accounts is annotated with a doc comment elaborating the reason why
checks are not required.
The most common explanation given in the audited programs is “skip”. This is not an explanation.

Proof of Issue

File name: initialize.rs
Line number: 26

```rust 

/// CHECK: skip 

admin_key: AccountInfo<'info>, 

Severity and Impact Summary 

The explanation “skip” does not actually describe why no checks are required. While it does silence anchor 

build it does not help new developers understand the reasoning. 

There are 280 doc comments “CHECK: skip”. 

Recommendation 

It could be helpful during the maintenance of the programs if the required documentation were more helpful. 

References 

https://book.anchor-lang.com/chapter_3/the_accounts_struct.html#safety-checks  

https://book.anchor-lang.com/chapter_3/the_accounts_struct.html%23safety-checks


 

Friktion Labs, Inc. 

Security Assessment of Friktion Portfolio Management Smart Contracts 

 

 

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0  |  05/31/22 

 Page 19 of 23 

Kickoff Ramp-up Review Report Verify

METHODOLOGY 

Kudelski Security uses the following high-level methodology when approaching engagements. They are broken 

up into the following phases.  

 

 

 

Figure 2: Methodology Flow 

Kickoff 

The project is kicked off as the sales process has concluded. We typically set up a kickoff meeting where project 

stakeholders are gathered to discuss the project as well as the responsibilities of participants. During this meeting 

we verify the scope of the engagement and discuss the project activities. It’s an opportunity for both sides to ask 

questions and get to know each other. By the end of the kickoff there is an understanding of the following:  

• Designated points of contact 

• Communication methods and frequency 

• Shared documentation 

• Code and/or any other artifacts necessary for project success 

• Follow-up meeting schedule, such as a technical walkthrough 

• Understanding of timeline and duration 

Ramp-up 

Ramp-up consists of the activities necessary to gain proficiency on the particular project. This can include the 

steps needed for familiarity with the codebase or technological innovation utilized. This may include, but is not 

limited to: 

• Reviewing previous work in the area including academic papers 

• Reviewing programming language constructs for specific languages 

• Researching common flaws and recent technological advancements  

Review 

The review phase is where most of the work on the engagement is completed. This is the phase where we 

analyze the project for flaws and issues that impact the security posture. Depending on the project this may 

include an analysis of the architecture, a review of the code, and a specification matching to match the 

architecture to the implemented code.  

In this code audit, we performed the following tasks: 

1. Security analysis and architecture review of the original protocol 



 

Friktion Labs, Inc. 

Security Assessment of Friktion Portfolio Management Smart Contracts 

 

 

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0  |  05/31/22 

 Page 20 of 23 

2. Review of the code written for the project 

3. Compliance of the code with the provided technical documentation 

The review for this project was performed using manual methods and utilizing the experience of the reviewer. No 

dynamic testing was performed, only the use of custom-built scripts and tools were used to assist the reviewer 

during the testing. We discuss our methodology in more detail in the following sections.  

Code Safety 

We analyzed the provided code, checking for issues related to the following categories: 

• General code safety and susceptibility to known issues 

• Poor coding practices and unsafe behavior 

• Leakage of secrets or other sensitive data through memory mismanagement  

• Susceptibility to misuse and system errors 

• Error management and logging 

This list is general list and not comprehensive, meant only to give an understanding of the issues we are looking 

for.  

Technical Specification Matching 

We analyzed the provided documentation and checked that the code matches the specification. We checked for 

things such as:  

• Proper implementation of the documented protocol phases 

• Proper error handling 

• Adherence to the protocol logical description  

Reporting 

Kudelski Security delivers a preliminary report in PDF format that contains an executive summary, technical 

details, and observations about the project. 

The executive summary contains an overview of the engagement including the number of findings as well as a 

statement about our general risk assessment of the project. We may conclude that the overall risk is low but 

depending on what was assessed we may conclude that more scrutiny of the project is needed. 

We not only report security issues identified but also informational findings for improvement categorized into 

several buckets: 

• Critical 

• High 

• Medium 

• Low 

• Informational 



 

Friktion Labs, Inc. 

Security Assessment of Friktion Portfolio Management Smart Contracts 

 

 

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0  |  05/31/22 

 Page 21 of 23 

The technical details are aimed more at developers, describing the issues, the severity ranking and 

recommendations for mitigation. 

As we perform the audit, we may identify issues that aren’t security related, but are general best practices and 

steps, that can be taken to lower the attack surface of the project. We will call those out as we encounter them 

and as time permits. 

As an optional step, we can agree on the creation of a public report that can be shared and distributed with a 

larger audience.   

Verify 

After the preliminary findings have been delivered, this could be in the form of the approved communication 

channel or delivery of the draft report, we will verify any fixes withing a window of time specified in the project. 

After the fixes have been verified, we will change the status of the finding in the report from open to remediated.  

The output of this phase will be a final report with any mitigated findings noted.  

Additional Note 

It is important to note that, although we did our best in our analysis, no code audit or assessment is a guarantee 

of the absence of flaws. Our effort was constrained by resource and time limits along with the scope of the 

agreement.  

While assessment the severity of the findings, we considered the impact, ease of exploitability, and the probability 

of attack. These is a solid baseline for severity determination.  

The Classification of identified problems and vulnerabilities 

There are four severity levels of an identified security vulnerability.  

Critical – vulnerability that will lead to loss of protected assets 

• This is a vulnerability that would lead to immediate loss of protected assets 

• The complexity to exploit is low 

• The probability of exploit is high 

High - A vulnerability that can lead to loss of protected assets 

• All discrepancies found where there is a security claim made in the documentation that cannot be found in 
the code 

• All mismatches from the stated and actual functionality 

• Unprotected key material 

• Weak encryption of keys 

• Badly generated key materials 



 

Friktion Labs, Inc. 

Security Assessment of Friktion Portfolio Management Smart Contracts 

 

 

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0  |  05/31/22 

 Page 22 of 23 

• Tx signatures not verified 

• Spending of funds through logic errors 

• Calculation errors overflows and underflows 

Medium - a vulnerability that hampers the uptime of the system or can lead to other 

problems 

• Insecure calls to third party libraries 

• Use of untested or nonstandard or non-peer-revied crypto functions 

• Program crashes leaves core dumps or write sensitive data to log files 

Low - Problems that have a security impact but does not directly impact the protected 

assets 

• Overly complex functions 

• Unchecked return values from 3rd party libraries that could alter the execution flow  

Informational 

• General recommendations 

  



 

Friktion Labs, Inc. 

Security Assessment of Friktion Portfolio Management Smart Contracts 

 

 

© 2022 Kudelski Security, Inc. Public. All Rights Reserved.Version 2.0  |  05/31/22 

 Page 23 of 23 

Tools 

The following tools were used during this portion of the test. A link for more information about the tool is provided 
as well. 

Tools used during the code review and assessment 

• Rust – cargo tools 

• IDE modules for Rust and analysis of source code 

• Cargo audit which uses https://rustsec.org/advisories/ to find vulnerabilities cargo. 

RustSec.org 

About RustSec 

The RustSec Advisory Database is a repository of security advisories filed against Rust crates published and 
maintained by the Rust Secure Code Working Group. 

The RustSec Tool-set used in projects and CI/CD pipelines 

• cargo-audit - audit Cargo.lock files for crates with security vulnerabilities. 

• cargo-deny - audit Cargo.lock files for crates with security vulnerabilities, limit the usage of particular 

dependencies, their licenses, sources to download from, detect multiple versions of same packages in the 
dependency tree and more. 

 

https://rustsec.org/advisories/

