
Smart Contract Code Review

And Security Analysis Report

Customer: Paraswap

Date: 01/03/2024



We express our gratitude to the Paraswap team for the collaborative engagement that enabled the execution of this

Smart Contract Security Assessment.

Paraswap is a DeFi aggregator that unites the liquidity of decentralized exchanges and lending protocols into one

comprehensive and secure interface and APIs.

Platform: EVM

Language: Solidity

Tags: DeFi aggregator; DEX

Timeline: 08/02/2024 � 01/03/2024

Methodology: https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/paraswap/paraswap-contracts-v6/

Commit 3724093dd6f412ace020799be11b830fda8b8b0a

2

https://hackenio.cc/sc_methodology
https://github.com/paraswap/paraswap-contracts-v6/


Audit Summary

9/10 8/10 64.38% 10/10
Security Score Code quality score Test coverage Documentation quality score

Total 7.6/10
The system users should acknowledge all the risks summed up in the risks section of the report

9 1 4 0
Total Findings Resolved Accepted Mitigated

Findings by severity

Critical 0

High 0

Medium 2

Low 1

Vulnerability Status

F�2024�1039 � Missing validation for quotedAmount parameter Accepted

F�2024�1040 � Missing checks for zero address Accepted

F�2024�1041 � Violation of the Checks-Effects-Interactions �CEI� pattern in AugustusFees.sol Accepted

F�2024�1050 � Use of deprecated selfdestruct function in SelfdestructFacet.sol Accepted

F�2024�1042 � Use of transfer instead of call to send native assets Fixed

F�2024�0924 � Missing return value check in ERC20Utils's getBalance function Pending Fix

F�2024�0954 � Incorrect swap amount calculations due to overflows and underflows in MakerPSMRouterFacet Pending Fix

F�2024�1038 � Floating pragma Pending Fix

F�2024�1052 � Missing events for important state changes Pending Fix

3

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/f68646ec-aeeb-4f89-a537-039cd2b0f324
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/c90c32df-0dea-42f8-8e01-957168e6f595
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/f93ce05d-10c9-4a0f-b4b8-e0c2143b6d71
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/2d72b34b-f16e-457d-97b8-eb6ce55a2d19
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/6424dcee-f839-4e0e-9b1c-818e8bfc967d
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/8fb5d012-870c-4814-84df-705f729f5384
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/36123367-724d-42a7-aaf1-fc264e4db22d
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/eb96656a-d11d-4f5b-b471-045aac3d5894
https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/40b43923-0454-4c2e-9bf9-6f2448850544


This report may contain confidential information about IT systems and the intellectual property of the Customer, as well

as information about potential vulnerabilities and methods of their exploitation. 

The report can be disclosed publicly after prior consent by another Party. Any subsequent publication of this report

shall be without mandatory consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Paraswap

Audited By Carlo Parisi, Eren Gonen, Viktor Raboshchuk

Approved By Przemyslaw Swiatowiec

Website https://www.paraswap.io/

Changelog 01/03/2024 � Preliminary Report

4

https://www.paraswap.io/


Table of Contents

System Overview 6

Privileged Roles 8

Executive Summary 9

Documentation Quality 9

Code Quality 9

Test Coverage 9

Security Score 9

Summary 9

Risks 10

Findings 11

Vulnerability Details 11

Observation Details 22

Disclaimers 23

Appendix 1. Severity Definitions 24

Appendix 2. Scope 25



System Overview

ParaSwap aggregates decentralized exchanges and DeFi services in one comprehensive interface to streamline and

facilitate users' interactions with decentralized finance on Ethereum and EVM-compatible chains: Polygon, Avalanche,

BSC, Optimism, Arbitrum, Base, Polygon zkEVM, Fantom & more.

AugustusV6.sol � The V6 implementation of the ParaSwap onchain aggregation protocol

AugustusV6Init.sol � Initialize state varaibles for AugustusV6 Diamond

AugustusV6Types.sol � Structures variables declaration

facets/BackwardCompatibilityFacet.sol � A facet that returns the address of the TokenTransferProxy contract

facets/FeeAdminFacet.sol � A facet for the control the fee related storage variables on AugustusV6

facets/MakerPSMRouterFacet.sol � A facet for executing direct MakerPSM swaps

facets/SelfdestructFacet.sol � A facet which allows the contract owner to selfdestruct the contract

fees/AugustusFees.sol � Contract for handling fees

fees/AugustusFeeVault.sol � Contract allows partners to collect fees stored in the vault, and allows augustus

contracts to register fees

interfaces/IAugustusFeeVault.sol � Interface for the AugustusFeeVault contract

interfaces/IAugustusRFQ.sol � Interface for the AugustusRFQ contract

interfaces/IAugustusRFQRouter.sol � Interface for direct swaps on AugustusRFQ

interfaces/IBackwardCompatibility.sol � Interface for the BackwardCompatibility contract 

interfaces/IBalancerV2SwapExactAmountIn.sol � Interface for executing swapExactAmountIn directly on Balancer

V2 pools

interfaces/IBalancerV2SwapExactAmountOut.sol � Interface for executing swapExactAmountOut directly on

Balancer V2 pools

interfaces/ICurveV1SwapExactAmountIn.sol � Interface for direct swaps on Curve V1

interfaces/ICurveV2SwapExactAmountIn.sol � Interface for direct swaps on Curve V2

interfaces/IErrors.sol � Common interface for errors

interfaces/IFeeAdmin.sol � Interface for interacting with the FeeAdminFacet contract, which controls fee related

storage variables all functions are callable only by the contract owner set by the ownership facet

interfaces/IGenericSwapExactAmountIn.sol � Interface for executing a generic swapExactAmountIn through an

Augustus executor

interfaces/IGenericSwapExactAmountOut.sol � Interface for executing a generic swapExactAmountOut through an

Augustus executor

interfaces/IMakerPSMRouter.sol � Interface for direct swaps on MakerPSM

interfaces/ISelfdestruct.sol � Interface for interacting with the SelfdestructFacet contract, which allows the contract

owner to selfdestruct the contract

interfaces/IUniswapV2SwapExactAmountIn.sol � Interface for direct swaps on Uniswap V2

interfaces/IUniswapV2SwapExactAmountOut.sol � Interface for direct swapExactAmountOut on Uniswap V2

interfaces/IUniswapV3SwapCallback.sol � Any contract that calls IUniswapV3PoolActions#swap must implement

this interface

interfaces/IUniswapV3SwapExactAmountIn.sol � Interface for executing direct swapExactAmountIn on Uniswap V3

interfaces/IUniswapV3SwapExactAmountOut.sol � Interface for executing direct swapExactAmountOut on Uniswap

V3

interfaces/IWETH.sol � An interface for WETH IERC20

libraries/ERC20Utils.sol � A contract with optimized functions for ERC20 tokens

routers/Routers.sol � A wrapper for all router contracts

routers/general/AugustusRFQRouter.sol � A contract for executing direct AugustusRFQ swaps

routers/swapExactAmountIn/GenericSwapExactAmountIn.sol

routers/swapExactAmountIn/direct/BalancerV2SwapExactAmountIn.sol � A contract for executing direct

swapExactAmountIn on Balancer V2

routers/swapExactAmountIn/direct/CurveV1SwapExactAmountIn.sol � A contract for executing direct CurveV1

swaps

routers/swapExactAmountIn/direct/CurveV2SwapExactAmountIn.sol � A contract for executing direct CurveV2

swaps

6



routers/swapExactAmountIn/direct/UniswapV2SwapExactAmountIn.sol � A contract for executing direct

swapExactAmountIn on UniswapV2 pools

routers/swapExactAmountIn/direct/UniswapV3SwapExactAmountIn.sol � A contract for executing direct

swapExactAmountIn on Uniswap V3

routers/swapExactAmountOut/GenericSwapExactAmountOut.sol � Router for executing generic swaps with exact

amount in through an executor

routers/swapExactAmountOut/direct/BalancerV2SwapExactAmountOut.sol � A contract for executing direct

swapExactAmountOut on BalancerV2 pools

routers/swapExactAmountOut/direct/UniswapV2SwapExactAmountOut.sol � A contract for executing direct

swapExactAmountOut on UniswapV2 pools

routers/swapExactAmountOut/direct/UniswapV3SwapExactAmountOut.sol � A contract for executing direct

swapExactAmountOut on UniswapV3 pools

storage/AugustusStorage.sol � Inherited storage layout for AugustusV6, contracts should inherit this contract to

access the storage layout

util/AugustusRFQUtils.sol � A contract containing common utilities for AugustusRFQ swaps

util/BalancerV2Utils.sol � A contract containing common utilities for BalancerV2 swaps

util/GenericUtils.sol � A contract containing common utilities for Generic swaps

util/MakerPSMUtils.sol � A contract containing swap functions  for Maker PSM

util/Permit2Utils.sol � A contract containing common utilities for Permit2

util/UniswapV2Utils.sol � A contract containing common utilities for UniswapV2 swaps

util/UniswapV3Utils.sol � A contract containing common utilities for UniswapV3 swaps

util/WETHUtils.sol � A contract containing common utilities for WETH

vendor/Diamond.sol � Implementation of a diamond

vendor/facet/DiamondCutFacet.sol � A facet that can  add/replace/remove any number of functions and optionally

execute a function with delegatecall

vendor/facet/DiamondLoupeFacet.sol � A facet is in charge of documenting other facets. Allowing users to see

what the facet addresses and functions are.

vendor/facet/OwnershipFacet.sol � A facet designed to manage ownership

vendor/interfaces/IAllowanceTransfer.sol � Handles ERC20 token permissions through signature based allowance

setting and ERC20 token transfers by checking allowed amounts

vendor/interfaces/IDiamondCut.sol � Interface for the DiamondCut contract

vendor/interfaces/IDiamondLoupe.sol � Interface for the DiamondLoupe contract

vendor/interfaces/IEIP712.sol � Interface defines function for domain separator value, that unique to each domain

vendor/interfaces/IERC165.sol � Interface defines function for support of contract interfaces

vendor/interfaces/IERC173.sol � Interface defines standard functions for owning or controlling a contract.

vendor/libraries/LibDiamond.sol � Library that provides  helper functions to write an application with the Diamond

Standard.

Privileged roles

The owner of the FeeAdminFacet contract can set the fee wallet address, set the second fee wallet address, set

the fee blacklisted status of a token, batch set the fee blacklisted status of tokens.

The owner of the SelfdestructFacet contract can  selfdestruct the contract.

The owner of the AugustusFeeVault contract can set the augustus contract approval status.

The owner of the Augustv6 coontract can either add/remove/replace a facet on the diamond proxy or transfer the

ownership.

7



Executive Summary

This report presents an in-depth analysis and scoring of the customer's smart contract project. Detailed scoring criteria

can be referenced in the scoring methodology.

Documentation quality

The total Documentation Quality score is 10 out of 10.

Functional requirements are provided.

Technical description is provided.

NatSpec is present.

Code quality

The total Code Quality score is 8 out of 10.

0 address checks are missing.

Important events are not emitted.

Floating pragma is used.

Test coverage

Code coverage of the project is 64.38% (branch coverage).

Deployment and basic user interactions are covered with tests.

Security score

Upon auditing, the code was found to contain 0 critical, 0 high, 2 medium, and 1 low severity issues, leading to a

security score of 9 out of 10. 

All identified issues are detailed in the “Findings” section of this report.

Summary

The comprehensive audit of the customer's smart contract yields an overall score of 7.6. This score reflects the

combined evaluation of documentation, code quality, test coverage, and security aspects of the project.

8

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/


Risks

Numerous contracts are out of scope, including executors, AugustRFQ, Curve, Balance, Uniswap, among others.

This poses a risk because the code cannot be reviewed, and the proper functioning of interactions cannot be

checked, as these contracts (along with other smaller ones) are excluded from the scope.

In AugustRFQRouter.sol, there is a check on line 131 that verifies if afterBalance - beforeBalance <

toAmount. This check might fail if the destToken is a reflexive token or a token with a transfer fee, especially if the

toAmount is not calculated while considering these characteristics of the token.

The contracts are upgradeable, which poses a risk when adding new functionalities. Additionally, vulnerabilities

could be introduced during the upgrade process.

Solidity Version Compatibility and Cross-Chain Deployment: The project utilizes Solidity version 0.8.20 or higher,

which includes the introduction of the PUSH0 �0�5f) opcode. This opcode is currently supported on the Ethereum

mainnet but may not be universally supported across other blockchain networks. Consequently, deploying the

contract on chains other than the Ethereum mainnet, such as certain Layer 2 �L2� chains or alternative networks,

might lead to compatibility issues or execution errors due to the lack of support for the PUSH0 opcode. In scenarios

where deployment on various chains is anticipated, selecting an appropriate Ethereum Virtual Machine �EVM�

version that is widely supported across these networks is crucial to avoid potential operational disruptions or

deployment failures.

9



Findings

Vulnerability Details

F-2024-0954 - Incorrect swap amount calculations due to over�ows and

under�ows in MakerPSMRouterFacet - Medium

Description: The MakerPSMUtils contract, utilized by the MakerPSMRouterFacet for swap

operations, contains critical arithmetic vulnerabilities in its

_executeSwapExactAmountInOnMakerPSM and

_executeSwapExactAmountOutOnMakerPSM functions. These vulnerabilities stem

from potential overflow and underflow scenarios during the calculation of swap

amounts, leading to incorrect token swap values.

In the _executeSwapExactAmountInOnMakerPSM function, the gemAmount variable is

calculated using a formula that can result in overflow under certain conditions.

Specifically, if the product of _fromAmount and WAD �10^18� exceeds the maximum

value of a uint256, an overflow occurs. This can happen when _fromAmount is

extremely large (e.g., greater than 2^196). Additionally, if the sum of WAD and toll

exceeds max uint256, or if the final product of ((_fromAmount * WAD) / (WAD +

toll)) * to18ConversionFactor surpasses the max uint256 limit, an overflow is

also possible.

_executeSwapExactAmountInOnMakerPSM Overflow Scenarios In Case 0:

If (_fromAmount * WAD) exceeds 2^256, an overflow occurs. For example, if

_fromAmount equals

115792089237316195423570985008687907853269984665640564039458

(2^196 < _fromAmount ≤ 2^256), it results in an overflow.

If (WAD + toll) exceeds 2^256, an overflow occurs.

If (_fromAmount * WAD) / (WAD + toll) * to18ConversionFactor

exceeds 2^256, an overflow occurs.

In the _executeSwapExactAmountOutOnMakerPSM function, the calculation of

gemAmount involves multiple steps where overflow and underflow can occur. For

instance, if toAmount is exceedingly large (greater than 2^196�, the multiplication with

WAD can overflow. Similarly, the calculation of b (the product of (WAD - toll) and

to18ConversionFactor) can overflow if to18ConversionFactor is extremely large

or underflow if toll is greater than 10^18. The final calculation of gemAmount can also

result in overflow or underflow depending on the values of a and b.

_executeSwapExactAmountOutOnMakerPSM Overflow and Underflow Scenarios In

The Default Case:

a will overflow if toAmount is equal to (2^196 < toAmount ≤ 2^256).

b will overflow if to18ConversionFactor is (2^196 < to18ConversionFactor

≤ 2^256), and (sub(WAD, toll) = 1E18).

b will underflow if toll is greater than 1E18.

gemAmount will overflow if a + b exceeds 2^256.

gemAmount will underflow if (a + b = 0) since div(sub(add(a, b), 1), b).

These arithmetic vulnerabilities can lead to incorrect swap amounts being calculated,

resulting in users either receiving fewer tokens than they should or more tokens than

intended.

10

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/36123367-724d-42a7-aaf1-fc264e4db22d


Assets:
util/MakerPSMUtils.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Pending Fix

Classification

Severity: Medium

Impact: Likelihood �1�5�� 3

Impact �1�5�� 4

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 2.724296895429098 �Medium]

Recommendations

Recommendation: Either add checks before performing calculations, or, considering that Solidity version

≥0.8 includes overflow/underflow checks, perform this calculation outside of the

assembly.

11



F-2024-1050 - Use of deprecated selfdestruct function in SelfdestructFacet.sol -

Medium

Description: The selfdestruct function is used in the SelfdestructFacet.sol file. This function

is deprecated and considered dangerous to use. It can introduce security vulnerabilities.

Furthermore, there are plans in the Ethereum roadmap to either completely remove

selfdestruct or change its behavior in unpredictable ways.

Assets:
facets/SelfdestructFacet.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Accepted

Classification

Severity: Medium

Impact: Likelihood �1�5�� 2

Impact �1�5�� 5

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 3.5 �Medium]

Recommendations

Recommendation: It is recommended to remove the use of selfdestruct from the smart contract. If the

goal is to disable the contract, consider implementing a "circuit breaker" or "pause"

functionality that allows certain functions to be disabled, while still allowing others (like

a withdrawal function) to be used. This provides more control and safety compared to

selfdestruct.

Remediation: The team responded that they will deploy on several EVM chains that do

not follow the same roadmap as Ethereum. This is a facet that can be removed easily or

not deployed at all. The issue was mitigated.

External References:
EIP�6046

EIP�4758

12

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/2d72b34b-f16e-457d-97b8-eb6ce55a2d19
https://eips.ethereum.org/EIPS/eip-6046
https://eips.ethereum.org/EIPS/eip-4758


F-2024-1042 - Use of transfer instead of call to send native assets - Low

Description: In lines 119, 146, and 162 of AugustRFQRouter.sol,  the contract uses built-in

transfer() function for transferring of ETH to a beneficiary. However, if the

beneficiary is a smart contract, they might not be able to receive these ETH due to the

gas limit associated with the transfer function in Solidity.

The transfer() function was commonly used in earlier versions of Solidity for its

simplicity and automatic reentrancy protection. However, it was identified as potentially

problematic due to its fixed gas limit of 2300.

The usage of transfer() function can lead to unintended function call revert when the

receiving contract's receive() or fallback() functions require more than 2300 Gas

for processing.

Status: Fixed

Classification

Severity: Low

Impact: Likelihood �1�5�� 2

Impact �1�5�� 3

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 2.5 [Low]

Recommendations

Recommendation: It is recommended to use built-in call() function instead of transfer() to transfer

native assets. This method does not impose a gas limit, it provides greater flexibility and

compatibility with contracts having more complex business logic upon receiving the

native tokens. When working with then call() function ensure that its execution is

successful by checking the returned boolean value. It is also recommended to fallow the

Check-Effects-Interactions �CEI� pattern in every case to prevent reentrancy issues.

Remediation: transfer() has been changed with safeTransfer() from

ERC20Utils.sol.

13

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/6424dcee-f839-4e0e-9b1c-818e8bfc967d


F-2024-0924 - Missing return value check in ERC20Utils's getBalance function -

Info

Description: There is a missing return value check inside the ERC20Utils contract. If the provided

address is an Externally Owned Account �EOA� or a contract that either does not return

data or returns less data than expected, the getBalance function will return incorrect

data.

The getBalance function uses staticcall to query the balanceOf function of an

ERC20 token. 

function getBalance(IERC20 token, address account) internal view returns (uint256

balanceOf) {

// solhint-disable-next-line no-inline-assembly

assembly {

switch eq(token, 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE)

// ETH

case 1 { balanceOf := balance(account) }

// ERC20

default {

let x := mload(64) // get the free memory pointer

mstore(x, 0x70a0823100000000000000000000000000000000000000000000000000000000) //

store the selector

mstore(add(x, 4), account) // store the account

let success := staticcall(gas(), token, x, 36, x, 32) // call balanceOf

if success { balanceOf := mload(x) } // load the balance

}

}

}

If the token address is an EOA or a contract that does not return data (or returns less

data than expected), the staticcall will succeed but return no data. In such cases,

the function erroneously returns the function selector for balanceOf()

(0�70a082310), instead of the actual balance or an error. This issue arises because

staticcall does not validate the length of the returned data, leading to incorrect or

misleading results. The function may report incorrect balances, leading to confusion and

potential errors in dependent operations.

Assets:
libraries/ERC20Utils.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Pending Fix

Classification

Severity: Info

Impact: Likelihood �1�5�� 3

Impact �1�5�� 1

Exploitability �1,2�� 1

Complexity �0�2�� 0

Final Score: 1.38 �Informational]

Recommendations

Recommendation: Before executing the getBalance function, insert a check to determine if the target

address is a smart contract.

14

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/8fb5d012-870c-4814-84df-705f729f5384


External References:
Consensys

15

https://consensys.io/diligence/blog/2019/07/return-data-length-validation-a-bug-we-missed/


F-2024-1038 - Floating pragma - Info

Description: The project uses floating pragmas that is not locked.

This may result in the contracts being deployed using the wrong pragma version, which

is different from the one they were tested with. For example, they might be deployed

using an outdated pragma version which may include bugs that affect the system

negatively.

Status: Pending Fix

Classification

Severity: Info

Recommendations

Recommendation: It is recommended to specify a fixed compiler version to ensure that the contracts

always behave as expected, regardless of any changes in future compiler versions.

16

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/eb96656a-d11d-4f5b-b471-045aac3d5894


F-2024-1039 - Missing validation for quotedAmount parameter - Info

Description: In the AugustusFees.sol file, the processSwapExactAmountInFeesAndTransfer

function (and several others) calculate the surplus using the quoted amount. However,

there are no checks or restrictions on how large or small the quoted amount can be.

This lack of checks could lead to incorrect surplus calculations if an incorrect quoted

amount is provided. This could result in users losing funds.

Status: Accepted

Classification

Severity: Info

Recommendations

Recommendation: It is recommended to add checks to ensure that the quoted amount is within a

reasonable range. The quoted amount should be related to the minimum amount and/or

the received end amount. This will help prevent incorrect surplus calculations and

protect users' funds.

require(quotedAmount >= minAmount, "Quoted amount is too low");

require(quotedAmount <= receivedAmount, "Quoted amount is too high");

This issue should be addressed to ensure accurate surplus calculations and protect

users' funds.

17

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/f68646ec-aeeb-4f89-a537-039cd2b0f324


F-2024-1040 - Missing checks for zero address - Info

Description: In Solidity, the Ethereum address 0x0000000000000000000000000000000000000000

is known as the "zero address". This address has significance because it is the default

value for uninitialized address variables and is often used to represent an invalid or non-

existent address. The "

Missing zero address control" issue arises when a Solidity smart contract does not

properly check or prevent interactions with the zero address, leading to unintended

behavior.

For instance, a contract might allow tokens to be sent to the zero address without any

checks, which essentially burns those tokens as they become irretrievable. While

sometimes this is intentional, without proper control or checks, accidental transfers

could occur.

Missing checks were observed in the following contracts:

./AugustFee.sol: constructor()

./Routers.sol: constructor()

./ERC20.sol: constructor()

./Vesting.sol: constructor()

Assets:
AugustusV6.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

routers/Routers.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Accepted

Classification

Severity: Info

Recommendations

Recommendation: It is strongly recommended to implement checks to prevent the zero address from being

set during the initialization of contracts. This can be achieved by adding require

statements that ensure address parameters are not the zero address.

18

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/c90c32df-0dea-42f8-8e01-957168e6f595


F-2024-1041 - Violation of the Checks-E�ects-Interactions (CEI) pa�ern in

AugustusFees.sol - Info

Description: The Checks-Effects-Interactions �CEI� pattern is a best practice in smart contract

development that helps prevent re-entrancy attacks. According to this pattern, checks

(such as require statements) should be done first, followed by effects (state changes),

and finally interactions (calls to external contracts).

In the AugustusFees.sol file, on lines 379 and 241, the CEI pattern is violated. The

interaction with an external contract (destToken.safeTransfer(beneficiary,

receivedAmount)) is done before all effects are completed.

Assets:
fees/AugustusFees.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Accepted

Classification

Severity: Info

Recommendations

Recommendation: Despite the low risk in this specific case, it is still a best practice to follow the CEI

pattern. This helps prevent potential issues in the future if the code is modified. The

recommended change would be to complete all effects before calling safeTransfer.

External References:
Security Considerations

Use the Checks-Effects-Interactions Pattern

19

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/f93ce05d-10c9-4a0f-b4b8-e0c2143b6d71
https://docs.soliditylang.org/en/latest/security-considerations.html#security-considerations
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern


F-2024-1052 - Missing events for important state changes - Info

Description: Events for important state changes should be emitted for tracking actions off-chain.  

It was observed that events are missing events in the following functions:

setFeeWallet()

setFeeWalletDelegate()

batchSetTokenBlacklisting()

registerFee()

setAugustusApproval()

Events  are crucial for tracking changes on the blockchain, especially for actions that

alter significant contract states or permissions. The absence of events in these

functions means that external entities, such as user interfaces or off-chain monitoring

systems, cannot effectively track these important changes.

Assets:
facets/FeeAdminFacet.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

fees/AugustusFeeVault.sol [https://github.com/hknio/paraswap-contracts-v6�

6d60d0c74979dfeaa/tree/feat/gettokentransferproxy]

Status: Pending Fix

Classification

Severity: Info

Recommendations

Recommendation: Consider implementing and emitting events for the necessary functions.

20

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/40b43923-0454-4c2e-9bf9-6f2448850544


Observation Details

F-2024-1054 - Unsafe Arithmetic Conversions - Info

Description: The AugustusFees contract’s _distributeFeesUniV3() function contains unsafe

arithmetic uint160 conversions that do not perform bounds checking. For valid fee

boundaries used in practice this should never overflow and cause problems. However, it

remains an advisable practice to use bounds-checked arithmetic.

Status: Pending Fix

Recommendations

Recommendation: Implement explicit checks before casting from uint256 to uint160 to ensure that values

do not exceed uint160 limits.

21

https://portal.hacken.io/App/Projects/Details/52bac2f4-88d8-46a8-ad1b-4e6996466a36/Finding/1952abb7-0747-4482-9577-b3adc96f8625


Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at the time of the writing of

this report, with cybersecurity vulnerabilities and issues in smart contract source code, the details of which are

disclosed in this report �Source Code); the Source Code compilation, deployment, and functionality (performing the

intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and security of the code. The

report covers the code submitted and reviewed, so it may not be relevant after any modifications. Do not consider this

report as a final and sufficient assessment regarding the utility and safety of the code, bug-free status, or any other

contract statements. 

While we have done our best in conducting the analysis and producing this report, it is important to note that you

should not rely on this report only — we recommend proceeding with several independent audits and a public bug

bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not responsible for the correctness of the translated

versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its programming language, and

other software related to the smart contract can have vulnerabilities that can lead to hacks. Thus, the Consultant

cannot guarantee the explicit security of the audited smart contracts.

22



Appendix 1. Severity De�nitions

When auditing smart contracts, Hacken is using a risk-based approach that considers Likelihood, Impact, Exploitability

and Complexity metrics to evaluate findings and score severities. 

Reference on how risk scoring is done is available through the repository in our Github organization: 

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the loss of user funds or

contract state manipulation.

High
High vulnerabilities are usually harder to exploit, requiring specific conditions, or have a more limited scope,

but can still lead to the loss of user funds or contract state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most cases, cannot lead to asset

loss. Contradictions and requirements violations. Major deviations from best practices are also in this

category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will not have a significant

impact on code execution, do not affect security score but can affect code quality score.

23

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/paraswap/paraswap-contracts-v6/

Commit 3724093dd6f412ace020799be11b830fda8b8b0a

Whitepaper https://doc.paraswap.network/

Requirements
https://github.com/paraswap/paraswap-contracts-

v6/blob/feat/gettokentransferproxy/README.md

Technical

Requirements

https://github.com/paraswap/paraswap-contracts-

v6/blob/feat/gettokentransferproxy/README.md

Contracts in Scope

AugustusV6.sol

AugustusV6Init.sol

AugustusV6Types.sol

facets/BackwardCompatibilityFacet.sol

facets/FeeAdminFacet.sol

facets/MakerPSMRouterFacet.sol

facets/SelfdestructFacet.sol

fees/AugustusFees.sol

fees/AugustusFeeVault.sol

interfaces/IAugustusFeeVault.sol

interfaces/IAugustusRFQ.sol

interfaces/IAugustusRFQRouter.sol

interfaces/IBackwardCompatibility.sol

interfaces/IBalancerV2SwapExactAmountIn.sol

interfaces/IBalancerV2SwapExactAmountOut.sol

interfaces/ICurveV1SwapExactAmountIn.sol

interfaces/ICurveV2SwapExactAmountIn.sol

interfaces/IErrors.sol

interfaces/IFeeAdmin.sol

interfaces/IGenericSwapExactAmountIn.sol

interfaces/IGenericSwapExactAmountOut.sol

24

https://github.com/paraswap/paraswap-contracts-v6/
https://doc.paraswap.network/
https://github.com/paraswap/paraswap-contracts-v6/blob/feat/gettokentransferproxy/README.md
https://github.com/paraswap/paraswap-contracts-v6/blob/feat/gettokentransferproxy/README.md


Contracts in Scope

interfaces/IMakerPSMRouter.sol

interfaces/ISelfdestruct.sol

interfaces/IUniswapV2SwapExactAmountIn.sol

interfaces/IUniswapV2SwapExactAmountOut.sol

interfaces/IUniswapV3SwapCallback.sol

interfaces/IUniswapV3SwapExactAmountIn.sol

interfaces/IUniswapV3SwapExactAmountOut.sol

interfaces/IWETH.sol

libraries/ERC20Utils.sol

routers/Routers.sol

routers/general/AugustusRFQRouter.sol

routers/swapExactAmountIn/GenericSwapExactAmountIn.sol

routers/swapExactAmountIn/direct/BalancerV2SwapExactAmountIn.sol

routers/swapExactAmountIn/direct/CurveV1SwapExactAmountIn.sol

routers/swapExactAmountIn/direct/CurveV2SwapExactAmountIn.sol

routers/swapExactAmountIn/direct/UniswapV2SwapExactAmountIn.sol

routers/swapExactAmountIn/direct/UniswapV3SwapExactAmountIn.sol

routers/swapExactAmountOut/GenericSwapExactAmountOut.sol

routers/swapExactAmountOut/direct/BalancerV2SwapExactAmountOut.sol

routers/swapExactAmountOut/direct/UniswapV2SwapExactAmountOut.sol

routers/swapExactAmountOut/direct/UniswapV3SwapExactAmountOut.sol

storage/AugustusStorage.sol

util/AugustusRFQUtils.sol

util/BalancerV2Utils.sol

util/GenericUtils.sol

util/MakerPSMUtils.sol

util/Permit2Utils.sol

util/UniswapV2Utils.sol

util/UniswapV3Utils.sol

util/WETHUtils.sol

vendor/Diamond.sol

vendor/facet/DiamondCutFacet.sol

vendor/facet/DiamondLoupeFacet.sol

25



Contracts in Scope

vendor/facet/OwnershipFacet.sol

vendor/interfaces/IAllowanceTransfer.sol

vendor/interfaces/IDiamondCut.sol

vendor/interfaces/IDiamondLoupe.sol

vendor/interfaces/IEIP712.sol

vendor/interfaces/IERC165.sol

vendor/interfaces/IERC173.sol

vendor/libraries/LibDiamond.sol

26




