w SHERLOCK

Security Review For

Private Audit Contest Prepared For: dHEDGE

Lead Security Expert: xiaoming90
Date Audited: August 4 - August 13, 2025

Final Commit: 417230f

https://github.com/xiaoming9090
https://github.com/dhedge/V2-Public/tree/417230fc4cd97e820f6b86f743f4bd4ffe53d3a5

Introduction

Explore a universe of top-tier tokenized vaults. Contest focuses on core contracts,
updated Aave integration, new Pendle integration and a couple of periphery contracts
designed to improve UX.

Scope

Repository: dhedge/V2-Public
Audited Commit: 5d41cbbc75758c474d835d59bdbd29363ab808e6
Final Commit: 417230fc4cd97e820f6b86f743f4bd4ffe53d3a5
Files:
« contracts/guards/assetGuards/AavelLendingPoolAssetGuard.sol
» contracts/guards/assetGuards/pendle/PendlePTAssetGuard.sol
« contracts/guards/contractGuards/AavelLendingPoolGuardV3.sol
» contracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol
« contracts/limitOrders/PoolLimitOrderManager.sol
« contracts/PoolFactory.sol
« contracts/PoollLogic.sol
« contracts/PoolManagerlLogic.sol
» contracts/priceAggregators/ERC4626PriceAggregator.sol
« contracts/priceAggregators/PendlePTPriceAggregator.sol
» contracts/swappers/easySwapperV2/EasySwapperV2.sol
» contracts/swappers/easySwapperV2/WithdrawalVault.sol
» contracts/utils/pendle/PendlePTHandlerLib.sol

Final Commit Hash
417230fc4cd97e820f6b86f743f4bd4ffe53d3a5

Findings
Each issue has an assigned severity:

« Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

https://github.com/dhedge/V2-Public/tree/417230fc4cd97e820f6b86f743f4bd4ffe53d3a5

« High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

3 6

Issues Not Fixed and Not Acknowledged

High Medium

0 0]

Security experts who found valid issues

000000 Bigsam newspacexyz
0x37 j3x silver_eth
OxcOffEE kelcaM xiaoming?0

https://github.com/000000
https://github.com/0x37-web3
https://github.com/thongtrungtran
https://github.com/Tomiwasa0
https://github.com/amj3x
https://github.com/ke1caM
https://github.com/newspacexyz
https://github.com/silver-eth
https://github.com/xiaoming9090

Issue H-1: Tokens can be stolen

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/30

Found by

000000

Summary

Tokens can be stolen by a manager which is untrusted. Issue is different than A11 tokens
can be stolen, different root cause, not duplicates!

Root Cause

Missing YT validation in redeemPyToToken () path.

Internal Pre-conditions

External Pre-conditions

Attack Path

1.

Manager calls PoolLogic: :execTransaction() targeting redeemPyToToken () path in
the Pendle contract guard.

His data decodes into (poollLogicAddress, maliciousYTContract, ptToStealBalanc
e, TokenQOutput(supportedTokenOut, O, supportedTokenOut, NONE_SWAP_DATA)
(some pseudo code here, you get the point).

First checks in _validateSellPendlePT() check receiver is pool logic address (pass),
tokenOut field is supported (pass), swap data type is NONE (pass).

. Then we call isExpired() on our fake YT and we expect true, our malicious contract

handles that.

. We call PT() on our fake YT. In the fake YT contract, this is a function which returns

a fake PT address if msg. sender is the contract guard and the real PT to steal in the
else case. Due to that, this call returns a fake PT address. Note that this fake PT has
to be some token we do not have in our balance, can be our own contract or just

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/30

any token we don't have in the pool logic contract, so we return O on the balance0f (
) call.

6. intermediateSwapData -> (fakePT, supportedTokenOut, O, X).We have X tokens of
the supported token out, which can be 0, can be 1 million, whatever.

7. We call redeemPyToToken () on Pendle.

8. There, we call SY on our fake YT contract, return some malicious contract we own,
can be our fake YT contract itself.

9. Callinternal _redeemPyToSy(fakeSY, fakeYT, ptToStealBalance, 1). There, first we
call PT() on our fake YT, as sender is not the contract guard, we return the real PT to
steal. Then, transfer the PT from the pool contract to our fake YT contract. Then, ne
edToBurnYt is false as isExpired () returns true on our YT. Then, we call redeemPY ()
on our fake YT, we return some value above 0O, let's say 118, to pass the slippage
check in the internal function and we do a no-op.

10. _redeemSyToToken(poolLogicAddress, fakeSY, 1el8, TokenOutput, false) is called.
Swap data type is NONE, so we go in __redeemSy (). There, doPull is false (last input),
so we immediately call redeem() on our fake SY, we do a no-op and return some
number. Back in _redeemSyToToken() we check the return against the slippage in To
kenOutput we provided, which was 0, so it passes.

11. Pendle flow is over. End result is that the PT was transferred to the malicious
contract, it is stolen. No funds were transferred to the pool logic contract.

12. afterTxGuard() is called on the Pendle contract guard which checks slippage. As
source token is the fake PT, no funds were transferred from it, so srcAmount is O.
Destination token is the supported token, we didn't receive any, so dstAmount is also
0. Since both have the same value of 0%, slippage does not trigger as system thinks
we didn't send out any funds.

Impact

Direct theft of funds.

PoC

No response

Mitigation

Validate the YT to be legit.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/12

https://github.com/dhedge/V2-Public/pull/12

Issue H-2: Lack of validation allowing malicious man-
ager to bypass slippage control to steal funds

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/118

Found by
000000, xiaoming?0

Summary

Root Cause

Internal Pre-conditions

External Pre-conditions

Attack Path

It was observed that there is a lack of validation against the data pass in by the
manager in the PendleRouterV4ContractGuard.txGuard function.

The validateSellPendlePT() function is the core function for validating the manager's
input _data. Reviewed validateSellPendlePT function shows that it only checks three (3)
items, which is insufficient.

1. _receiver == _poolLogic
2. _output.tokenOut is supported assets
3. Swap type is NONE

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L153

File: PendleRouterV4ContractGuard.sol
153: function validateSellPendlePT(

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/118
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L153
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L153

154 : address _poolLogic,

1565: address _poolManagerLogic,

156: address _receiver,

157: IPA11ActionTypeV3.TokenOutput memory _output

168:) internal view {

159: require(_receiver == _poolLogic, "recipient is not pool");

160:

161: require (IHasSupportedAsset (_poolManagerLogic) . isSupportedAsset (_output.tok
— enOut), "unsupported destination asset");

162:

163: // Forbid swaps for initial version, this can be changed later

164: require(_output.swapData.swapType == IPAllActionTypeV3.SwapType.NONE,
— "only underlying");

165: }

The three (3) checks are not sufficient because it does not check other data such as mark
et or yt. Thus, a malicious manager can pass in a malicious market address (deployed by
the attacker). When Line 91 below IPMarket (market) .readTokens () is executed, it will
return an ERC20 token address that is supported by dHedge, but not the Pendle PT
tokens that are going to be swapped, utilized, or transferred out during the Pendle
operation.

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L91

File: PendleRouterV4ContractGuard.sol

075: } else if (method == IPActionSwapPTV3.swapExactPtForToken.selector) {
076: (

077 : address receiver,

078: address market,

079: ,

080: IPA11ActionTypeV3.TokenOutput memory output,

081: IPA11ActionTypeV3.LimitOrderData memory limit

082:) = abi.decode(

083: getParams (_data),

084: (address, address, uint256, IPA1lActionTypeV3.TokenOutput,

— IPAllActionTypeV3.LimitOrderData)

085:)

086:

087: _validateSellPendlePT(poolLogic, _poolManagerLogic, receiver, output);
088:

089: _validateLimitOrder(limit) ;

090:

091: (, address pt,) = IPMarket(market).readTokens();

092:

093: // “tokenOut”~ the the token to receive, no matter what the swap type is
094: intermediateSwapData = SlippageAccumulator.SwapData ({

095: srcAsset: pt,

096: dstAsset: output.tokenlOut,

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L91
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/pendle/PendleRouterV4ContractGuard.sol#L91

097: srcAmount: _getBalance(pt, poollLogic),

098: dstAmount: _getBalance (output.tokenOut, poolLogic)
099: B

100:

101: txType = uintl6(TransactionType.SellPendlePT);

When the code reaches the SlippageAccumulator part, it will evaluate to the following.
Refer to the audit comments below.

SlippageAccumulator.SwapData.srcAmount will be zero here. Since the pool does not hold
any WETH token (or other ERC20 token apart from Pendle PT token), the _getBalance can
be tricked to return zero.

intermediateSwapData = SlippageAccumulator.SwapData ({
srcAsset: pt, // Qaudit Non-PT token supported by dHedge (e.g., WETH)
dstAsset: output.tokenOut,

srcAmount: _getBalance(pt, poolLogic), // Qaudit return O when “balance0f()" is
— called.

dstAmount: _getBalance (output.tokenOut, poolLogic)
3

After each Pendle operation, the slippage check will be executed by the SlippageAccumul
atorUser.afterTxGuard() function.

In Line 42, when the _getBalance(intermediateSwapData.srcAsset, poollogic) is
executed, it will return zero. As such, swapData.srcAsset will be zero, which is an
important point to note.

srcAmount :

< intermediateSwapData.srcAmount.sub(_getBalance(intermediateSwapData.srcAsset,
— poollLogic))

srcAmount: (0.sub(0))

srcAmount: O

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/utils/SlippageAccumulatorUser.sol#L42

File: SlippageAccumulatorUser.sol

32: function afterTxGuard(address poolManagerLogic, address to, bytes memory /*
< data */) public virtual override {

33: address poollLogic = IPoolManagerLogic(poolManagerLogic) .poolLogic();
34: require(msg.sender == poolLogic, "not pool logic");

35:

36: slippageAccumulator.updateSlippageImpact (

37: poolManagerLogic,

38: to,

39: SlippageAccumulator.SwapData ({

40: srcAsset: intermediateSwapData.srcAsset,

41: dstAsset: intermediateSwapData.dstAsset,

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/utils/SlippageAccumulatorUser.sol#L42
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/utils/SlippageAccumulatorUser.sol#L42

42: srcAmount:
— intermediateSwapData.srcAmount.sub(_getBalance(intermediateSwapData.srcAsset,
< poollogic)),

43: dstAmount: _getBalance(intermediateSwapData.dstAsset,

< poolLogic) .sub(intermediateSwapData.dstAmount)

44 : b

45:);

46: intermediateSwapData = SlippageAccumulator.SwapData(address(0), address(0),
~ 0, 0);

47 : }

The following is the updateSlippageImpact () function where the actual slippage check is
performed.

In Line 110, the check will only be executed if the condition dstValue < srcValue is true.
Since swapData.srcAsset is zero, the srcValue in Line 106 will always be zero. The assetVal
ue () will not revert because, as mentioned earlier, the swapData.srcAsset will be
configured to an ERC20 token that is supported by dHedge. Thus, an oracle has been
configured, and price calculation will proceed with revert.

In this case, the condition dstValue < srcValue will always be false. Thus, the malicious
manager (also attacker here) can bypass the slippage control, and perform a
sandwich/MEV attack against the pendle's operation to steal funds.

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/utils/SlippageAccumulator.sol#L100

File: SlippageAccumulator.sol
100: function updateSlippageImpact (

101: address poolManagerLogic,

102: address router,

103: SwapData calldata swapData

104:) external onlyContractGuard(router) {

105: if

— (IHasSupportedAsset (poolManagerLogic) .isSupportedAsset (swapData.srcAsset)) {
106: uint256 srcValue = assetValue(swapData.srcAsset, swapData.srcAmount) ;
107: uint256 dstValue = assetValue(swapData.dstAsset, swapData.dstAmount);
108:

109: // Only update the cumulative slippage in case the amount received is
— lesser than amount sent/traded.

110: if (dstValue < srcValue) {

111: uint128 newSlippage =

<, srcValue.sub(dstValue) .mul (SCALING_FACTOR) .div(srcValue) .toUint128() ;
112:

113: uint128 newCumulativeSlippage =

< (uint256 (newSlippage) .add (getCumulativeSlippageImpact (poolManagerLogic)))
114: .toUint128() ;

115:

116: require (newCumulativeSlippage < maxCumulativeSlippage, "slippage
< impact exceeded");

10

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L100
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/utils/SlippageAccumulator.sol#L100

117:

118: // Update the last traded timestamp.

119: managerData[poolManagerLogic] .lastTradeTimestamp =
— (block.timestamp) .toUint64() ;

120:

121: // Update the accumulated slippage impact for the

122: managerData[poolManagerLogic] .accumulatedSlippage

— newCumulativeSlippage;

123: }

124: }

125: }

poolManager.

In the above example, | have shown an example using the code logic from the if (method
== IPActionSwapPTV3.swapExactPtForToken.selector) code block in the PendleRouterV4C
ontractGuard.txGuard function. However, this issue is not just limited to swapExactPtForT

oken.selector code block.

The following code block or Pendle operation is also vulnerable to a similar exploit
described here, with a slight modification, because the root cause is the same: a lack of

validation against the arbitrary _data passed in by the manager.

1. IPActionMiscV3.exitPostExpToToken.selector (market is not validated and can be

spoofed)

2. IPActionMiscV3.redeemPyToToken.selector (yt is not validated and can be spoofed)

3. IPActionSwapPTV3.swapExactTokenForPt.selector

Impact

A malicious manager can steal the funds in a pool/vault.

PoC

No response

Mitigation

No response

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/12

1

https://github.com/dhedge/V2-Public/pull/12

Issue H-3: Manager Can Steal User Funds Using set
UserEMode

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/123

Found by
000000, kelcaM, silver_eth, xiaoming?0

Summary

The protocol performs Health Factor (HF) checks for AAVE operations that can impact
a vaults's HF. However, the setUserEMode operation also affects a position's HF, but it is
not checked in AavelLendingPoolGuardV3.sol. This omission allows a manager to
manipulate the HF and potentially steal user funds via 1iquidations.

Root Cause

In AaveLendingPoolGuardV3.sol:

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/guards/contractGuards/AavelLendingPoolGuardV3.sol#L20-L96

function _canAffectHealthFactor(bytes4 method) internal pure returns (bool
— canAffect) {

if (
method == IAaveV3Pool.borrow.selector ||
method == IAaveV3Pool.setUserUseReserveAsCollateral.selector ||

method == TAaveV3Pool.withdraw.selector
) canAffect = true;

}

afterTxGuard checks whether an operation can affect the HF. canAffectHealthFactor
currently only flags borrow, setUserUseReserveAsCollateral, and withdraw as
HF-affecting operations.

There is no check for setUserEMode, which can reduce a position's HF to the minimum
threshold (1e18) as allowed by AAVE:

executeSetUserEMode

https://github.com/aave-dao/aave-v3-origin/blob/6138elfda45884b6547d094alddeef
43dcab4977/src/contracts/protocol/libraries/logic/EModelLogic.sol#L27-L53

validateHealthFactor

12

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/123
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/AaveLendingPoolGuardV3.sol#L90-L96
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/guards/contractGuards/AaveLendingPoolGuardV3.sol#L90-L96
https://github.com/aave-dao/aave-v3-origin/blob/6138e1fda45884b6547d094a1ddeef43dcab4977/src/contracts/protocol/libraries/logic/EModeLogic.sol#L27-L53
https://github.com/aave-dao/aave-v3-origin/blob/6138e1fda45884b6547d094a1ddeef43dcab4977/src/contracts/protocol/libraries/logic/EModeLogic.sol#L27-L53

https://github.com/aave-dao/aave-v3-origin/blob/6138elfda45884b6547d094alddeef
43dcab4977/src/contracts/protocol/libraries/logic/ValidationLogic.sol#L367-L395

uint256 public constant HEALTH_FACTOR_LIQUIDATION_THRESHOLD = 1el8;

require(
healthFactor >= HEALTH_FACTOR_LIQUIDATION_THRESHOLD,
Errors.HealthFactorLowerThanlLiquidationThreshold ()
)3

Internal pre-conditions

External pre-conditions

Attack Path

1. Manager creates an AAVE position and enables E-Mode using setUserEMode.

2. Manager supplies collateral and borrows an exact amount that sets up for E-Mode
removal.

3. Manager disables E-Mode using setUserEMode, reducing the position's HF to 1e18.

4. In the next block, the manager can liquidate the position, knowing it is eligible for
liquidation.

5. Manager liquidates the position and collects the 1iquidation bonus.

6. Manager steals assets from the Vault, compromising protocol security and causing
loss of user funds.

Impact

A manager can steal user funds by exploiting AAVE E-Mode and liquidations. Users lose
more than 1% and more than $10 of their principal.

PoC

1. Setup Collateral: $200,000 in ETH E-Mode: LTV 93%, Liquidation Threshold 95%,
Penalty 1% Normal: LTV 80.5%, Liquidation Threshold 83%, Penalty 5%

2. Debt for HF = 1 without E-Mode 1.00 =($200,000 x 0.83) / Debt Debt = $166,000

13

https://github.com/aave-dao/aave-v3-origin/blob/6138e1fda45884b6547d094a1ddeef43dcab4977/src/contracts/protocol/libraries/logic/ValidationLogic.sol#L367-L395
https://github.com/aave-dao/aave-v3-origin/blob/6138e1fda45884b6547d094a1ddeef43dcab4977/src/contracts/protocol/libraries/logic/ValidationLogic.sol#L367-L395

3. E-Mode Maximum borrow in E-Mode = $200,000 x 0.93 = $186,000 Required borrow =
$166,000

4. HF in E-Mode and after E-Mode removal [n E-Mode: ($200,000 x 0.95) /
166,000 = 1.145AfterE — Moderemoval : (200,000 x 0.83) / $166,000 =1

5. After E-Mode removal Health Factor is equal to 1e18 and in the next block due to
interest accural the position can be liquidated

Debt to be liquidated: $166,000 x 50% = $83,000 Collateral seized: 83, 000(debt) + (83,000
x 5% penalty) = $87,150 Liquidation bonus to liquidator: $4,150 (5% of $83,000)

6. After liquidation Remaining collateral: $200,000 - $87,150 = $112,850 Remaining debt:
$166,000 - $83,000 = 83, 000NewHealthFactor : (112,850 x 0.83) / $83,000 = 1.127

Total Direct Loss from Liquidation Bonus: $4,150

Mitigation
Add setUserEMode to operations that affect Health Factor:

function _canAffectHealthFactor(bytes4 method) internal pure returns (bool
— canAffect) {

if (
method == IAaveV3Pool.borrow.selector ||
method == IAaveV3Pool.setUserUseReserveAsCollateral.selector ||

method == IAaveV3Pool.withdraw.selector ||
Sat method == IAaveV3Pool.setUserEMode.selector
) canAffect = true;

3

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/?

14

https://github.com/dhedge/V2-Public/pull/9

Issue M-1: Malicious actors can DoS assets unrolling

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/33

Found by
000000

Summary

Malicious actors can DoS assets unrolling

Root Cause

When unrolling assets in WithdrawalVault:: unrollAssets() (which happens when a user
inits a withdrawal through EasySwapperV2), the following logic is executed:

for (uint256 i; i < supportedAssets.length; ++i) {
address asset = supportedAssets[i].asset;
uint16 assetType = IHasAssetInfo(poolFactory).getAssetType(asset);

// Unrolling logic based on asset type...

For Uniswap positions, the following is executed:

else if (assetType == 7) {
unrolledAssets = EasySwapperV3Helpers.getUnsupportedV3Assets(_dHedgeVault,
< asset);

Which runs the following:

function getUnsupportedV3Assets(address pool, address nonfungiblePositionManager)
— 1internal view returns (address[] memory assets) {
uint256 nftCount =
< INonfungiblePositionManager (nonfungiblePositionManager) .balanceOf (pool) ;
// Each position has two assets
assets = new address[] (nftCount * 2);
for (uint256 i = 0; i < nftCount; ++i) {
uint256 tokenId = INonfungiblePositionManager (nonfungiblePositionManager) .t
— okenOfOwnerByIndex(pool, i);
(, , address token0O, address tokenl, , , , , , , ,) = INonfungiblePosition
< Manager (nonfungiblePositionManager) .positions(tokenId);

assets[i * 2] = tokenO;

15

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/33

assets[i * 2 + 1] = tokenl;

This allows an attacker to create unbounded iteration, causing DoS and loss of funds due
to high gas expense.

Internal Pre-conditions

External Pre-conditions

Attack Path

1. Bob will init a withdrawal.

2. Alice interacts with the NFT manager by minting a ton of NFT positions to the pool,
minting is a permissionless process.

3. The iteration will go OOG, causing loss of funds due to the gas and DoS.

Another one:
1. Bob will init a withdrawal.

2. Alice interacts with the NFT manager and mints him a position with malicious
tokens which are then added to the srcAssets set.

3. When iterated over in recoverAssets (), they maliciously revert on transfers calls,
causing DoS.

Impact

Loss of funds due to gas and DoS.

PoC

No response

Mitigation

Handle storage for UniV3 positions internally and do not rely on the NFT manager
storage.

16

https://github.dev/Uniswap/v3-periphery/blob/main/contracts/NonfungiblePositionManager.sol/

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/14

17

https://github.com/dhedge/V2-Public/pull/14

Issue M-2: Withdrawals can fail due to approval over-
write

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/60

Found by
000000

Summary

Withdrawals can fail due to approval overwrite

Root Cause

When withdrawing from Aave, there is a chance the collateral we are withdrawing from
Aave is a PT. If withdraw data has been provided, we exit from the PT to the underlying
token of the PT, i.e. for PT-USDE, it would be USDE. Then, we swap all of our collaterals to
the debt token to repay our flashloan. The issue is that since both the PT and its
underlying token are supported assets in the system and can be added as collateral to
Aave, then here:

for (uint256 i; i < executionData.srcTokensLength; ++i) {
transactions [executionData.txCount] .to =
< address(swapProps.srcData[0] .srcTokenSwapDetails[i].token);
transactions[executionData.txCount] .txData =
— abi.encodeWithSelector (IERC20Extended.approve.selector, swapper,
< swapProps.srcData[0] .srcTokenSwapDetails[i].amount) ;
executionData.txCount++;

We would approve USDE twice, one for the PT-USDE underlying (as we exit from the PT to
USDE), and one from any USDE that has been provided as collateral to Aave. The first
approval would be overwritten by the second one. Then, here:

transactions[executionData.txCount] .to = swapper;

transactions[executionData.txCount] .txData =
< abi.encodeWithSelector (ISwapper.swap.selector, swapProps);

When the actual swap takes place, the swapper wouldn't have enough approval to
support the swap we are requesting, causing a revert.

18

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/60

Internal Pre-conditions

1. Both the PT-Underlying and Underlying are added as collateral to Aave. This is
completely expected as both assets are specifically whitelisted (USDE and its PT and
SUSDE and its PT for example), can be verified through the information in the
contest README about whitelisted tokens. Also note that managers are not
trusted, so they do not have to conform to some special trusted rules.

External Pre-conditions

Attack Path

No specific attack path, root cause mentions the necessary information.

Impact

DoS of proper withdrawals, break of core protocol functionality, Medium.

PoC

No response

Mitigation

Increase the approval instead of overwriting it, just be careful with USDT on mainnet.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/11

19

https://github.com/dhedge/V2-Public/pull/11

Issue M-3: Limit Order Slippage Validation Vulnera-
bility in EasySwapperV2 Causes Fund Loss For Users

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/69

Found by

newspacexyz

Summary

A vulnerability exists in the completeLimitOrderWithdrawal function of EasySwapperV2.sol
where the slippage validation logic incorrectly validates the _expectedDestTokenAmount
parameter. The function validates the total destination token balance in the
WithdrawalVault after swaps, rather than the actual swap output, creating a
vulnerability where front-running attacks by keepers can cause users to lose tokens
through excessive slippage while still passing the validation check.

Root Cause

The vulnerability is located in the completeLimitOrderWithdrawal function at lines 321-326
in EasySwapperV2.sol:

function completelLimitOrderWithdrawal(
IWithdrawalVault.MultiInSingleOutData calldata _swapData,
uint256 _expectedDestTokenAmount
) external returns (uint256 destTokenAmount) {
return _completeWithdrawal (msg.sender, _swapData, _expectedDestTokenAmount,
— WithdrawalVaultType.LIMIT_ORDER) ;

The problem is that _expectedDestTokenAmount represents the total destination token
balance in the WithdrawalVault after swaps, not the minimum output from the current
swap operation. This creates a vulnerability where:

1. A user creates multiple limit orders for different pools

2. Some limit orders are executed by keepers, depositing destination tokens into the
WithdrawalVault

3. When the user calls completeLimitOrderWithdrawal, the validation checks the total
balance against _expectedDestTokenAmount

4. If a keeper front-runs the user's transaction by executing another limit order, the
total balance may still exceed _expectedDestTokenAmount even if the current swap
suffers significant slippage

20

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/69
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/swappers/easySwapperV2/EasySwapperV2.sol#L321-L326

Internal Pre-conditions

1. A user must have created multiple limit orders for different pools

2. At least one limit order must have been executed by a keeper

External Pre-conditions

Attack Path

e User creates limit orders for PoolA and PoolB

 Limit order for PoolA is executed by a keeper, depositing 1000 USDC worth of
tokens into the user's WithdrawalVault

e User calls completeLimitOrderWithdrawal with _expectedDestTokenAmount = 1000
(expecting at least 1000 USDC total)

» A keeper executes the limit order for PoolB, which deposits 500 USDC into the user's
WithdrawalVault, that are unrolled to USDC

» The user's swap operation suffers significant slippage, e.g., 50% slippage
e The swap only produces 500 USDC instead of the expected 1000 USDC
« However, the total vault balance is now 500 + 500 = 1000 USDC

« The validation balanceAfterSwaps >= _expectedDestTokenAmount passes (1000 >=
1000)

« The user receives 1000 USDC but has lost 500 USDC due to slippage

Impact

Users can lose tokens because of the incorrect slippage protection mechanism.

PoC

Mitigation

The completeLimitOrderWithdrawal function should be modified to validate the swap
output instead of the total balance.

2]

function completelLimitOrderWithdrawal (
IWithdrawalVault.MultiInSingleOutData calldata _swapData,

uint256 _expectedSwapQOutput
) external returns (uint256 destTokenAmount) {
// Send balance + _expectedSwapOutput to “WithdrawalVault.swapToSingleAsset’

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/10

22

https://github.com/dhedge/V2-Public/pull/10

Issue M-4: beforeTokenTransfer() doesn't handle
Burning, which allows DoSing ALL limit orders from
being executed and forcing them to be executed at
aloss

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/72

Found by
0x37, OxcOffEE, j3x, silver_eth

Summary

_beforeTokenTransfer () doesn't handle the Burning case (as opposed to the Minting),
which allows DoSing ALL limit orders of a certain pool from being executed and force
them to be executed at a loss, preventing users from getting profit.

Root Cause

In case it's a minting, beforeTokenTransfer () skips the cooldown check.

But that's not the cause with the burning, which can lead to exploiting this check to
prevent ANY limit orders of a certain pool from being executed (we'll explain how later).

Unless the address (0) is whitelisted which leads to the execution of this line, but i doubt
this will be the case!

How can an attacker exploit the cooldown period?

Let's take a look at the getExitRemainingCooldown () function which is used in the check
that we're gonna exploit:

function getExitRemainingCooldown(address _depositor) public view returns (uint256
< remaining) {

uint256 cooldownFinished =

< lastDeposit[_depositor] .add(lastExitCooldown[_depositor]);

if (cooldownFinished < block.timestamp) return O;

remaining = cooldownFinished.sub(block.timestamp) ;

23

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/72
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L200
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L208
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L204

So an attacker needs to manipulate lastExitCooldown [easySwapperV2], so that when we
add it to lastDeposit [easySwapperV2], it will be >=block. timestamp.

We can do it by calling PoolLogic: :depositFor () in that dHedge vault, which will call the
internal function _depositFor() (we do it by depositing just 1 unit of a token, that's
0.000001 USD in the case of USDC).

Then, _depositFor () will set the lastExitCooldown [easySwapperV2] mapping right here. In
case the pool has liquidity in it (which is gonna be the case most of the times), the
cooldown will be calculated like this, and cause the require(getExitRemainingCooldown
(_from) == 0, "cooldown active"); check to fail the execution.

We know that when users create a limit order, the keeper will execute these orders when
the price conditions are met - by calling executeLimitOrdersSafe() (or executeLimitOrder
s ()), which calls the internal function _executeLimitOrder (), which calls the internal
function _processLimitOrderExecution().

When the keeper tries to execute the limit orders (using executeLimitOrders () OR execut
eLimitOrdersSafe () - both will lead to the failure of all the orders), the
easySwapper.initLimitOrderWithdrawalFor() line will cause a revert, since EasySwapperV2.
sol::initLimitOrderWithdrawalFor () calls PoolLogic::withdrawToSafe, and withdrawToSa
fe () burns the pool tokens here, which means they are transferred to address (0), which
leads to the trigger of the _beforeTokenTransfer () hook, which leads to getExitRemainin
gCooldown (easySwapperV2) being greater than O to cause the execution to fail for all
orders, since the from address here is the easySwapper's address for all the orders.

Internal Pre-conditions

e address(0) is not a whitelisted receiver (which i don't think it will be, it doesn't make
sense to whitelist the O address).

« The pool has to be public OR the easy swapper is an allowed member - see here

External Pre-conditions
N/A

Attack Path

The attacker can have a bot that automates calling depositFor (easySwapperV2) each
time the cooldown period is close to getting finished, that will DoS any limit orders from
getting executed for a very long period of time. The deposit amount is just 1 unit (unit and
not token), which is a neglectable loss. If we assume the token is deposit token is USDC,
and the attacker calls depositFor () 50 times a day, that's only 0.01825 USD a year.

24

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L257
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L325
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L858
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/limitOrders/PoolLimitOrderManager.sol#L334
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/swappers/easySwapperV2/EasySwapperV2.sol#L655
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L455
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L208
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L267

Explaining Why just 1 unit is enough

» Attacker deposits _amount = 1(0.000001 USDC or USDT).

e Then this calculation will become
usdAmount = _assetValue(_asset, _amount) =1* 10 (0.000001 USD, USDC price =1
USD, and the decimals of the price are 18 in the AssetHandler).

e For a non-empty pool,
liquidityMinted = usdAmount * totalSupplyBefore / fundValue

» From the PoC : the pool has 4 WETH (price = 1200 USD if we use the developer's
setup, and actually that price doesn't matter since it will get simplified in all cases)
and 1000 USDC, so fundValue = (4 * 1200 + 1000) * 1018 = 5800 * 1018.

 totalSupplyBefore = 5800 * 1018 (from initial deposits
where liquidityMinted = usdAmount).

e So,liquidityMinted = 1012 * 5800 * 1018 / 5800 * 1018 = 1012.
« Since 1012 > 100_000, the check require(liquidityMinted >= 100_000) passes.

Impact

« The attacker can prevent any limit orders of a certain pool from getting executed
for a very long period of time with very minimal loss, since if the attacker calls depos
itFor () 50 times a day, that's only 0.01825 USD a year.

» The attacker can prevent users from getting profit: If the attacker notices that
some orders will result in a profit for some users due to
currentPriceD18 > limitOrder_.takeProfitPriceD18, he can DoS the execution until the
price drops, and then stop the attack when he makes sure the order will be
executed at a loss (currentPriceD18 <= limitOrder_ .stopLossPriceD18).

So, executing limit orders is time-sensitive, due to this condition:

if (currentPriceD18 > limitOrder_.stopLossPriceD18 && currentPriceD18 <

< limitOrder_.takeProfitPriceD18)
revert LimitOrderNotFillable(currentPriceD18, limitOrder_.stopLossPriceD18,
— limitOrder_.takeProfitPriceD18);

So since the attacker can [for a long period of time] prevent the execution of orders who
currently pass the condition, until the condition no longer passes, we don't know when it
will pass again.

And according to sherlock docs:
Could Denial-of-Service (DOS), griefing, or locking of contracts count as Medium (or

High) severity issue? To judge the severity we use two separate criteria: 1- The issue
causes funds to be locked for more than a week. 2 - The issue impacts the availability

25

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L293
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolManagerLogic.sol#L300
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolFactory.sol#L463
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/priceAggregators/AssetHandler.sol#L80
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L298
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L300
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L318
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/limitOrders/PoolLimitOrderManager.sol#L322
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/limitOrders/PoolLimitOrderManager.sol#L322

PoC

Add the following test to the . /test/integration/common/limitOrders/PoolLimitOrderMa
nagerTestSetup.t.sol file

function test_ExploitCooldownPeriod() public {
// Preparations before creating a test pool
IAssetHandlerMock assetHandler =
< IAssetHandlerMock(IPoolFactoryMock(poolFactory) .getAssetHandler());
vm.startPrank(assetHandler.owner()) ;
assetHandler.setChainlinkTimeout (86400 * 365);
// This is instead of setting setExitCooldown to O (less code)
IPoolFactoryMock(poolFactory) .addReceiverWhitelist (address(poolLimitOrderManage |
— rProxy)); // as you will see, this won't help preventing the issue

// Create a pool with WETH and USDC as supported assets
IHasSupportedAssetMock.Asset [] memory supportedAssets = new

< IHasSupportedAssetMock.Asset[](2);

supportedAssets[0] = IHasSupportedAssetMock.Asset({asset: weth, isDeposit:

< truel);
supportedAssets[1] = IHasSupportedAssetMock.Asset({asset: usdc, isDeposit:
< truel});

address testPool = IPoolFactoryMock(poolFactory) .createFund(
false, user, "User", "Test Settlement Order", "TSO", O, O, supportedAssets
) §

// Deposit WETH and USDC into pool

deal (weth, user, 4el8);

deal (usdc, user, 1000e6);

vm.startPrank (user) ;

IERC20 (weth) . approve (testPool, 4el8);

IERC20 (usdc) .approve (testPool, 1000e6) ;
IPoolLogic(testPool) .deposit(weth, 4el8);
IPoolLogic(testPool) .deposit (usdc, 1000e6) ;
assertEq(IERC20 (weth) .balanceOf (testPool), 4el8);
assertEq(IERC20 (usdc) .balanceOf (testPool), 1000e6) ;
assertGt (IERC20 (testPool) . totalSupply (), 0);

assertEq(IERC20(weth) .balanceOf (user), 0);
assertEq(IERC20 (usdc) .balanceOf (user), 0);

uint256 userTestPoolBalance = IERC20(testPool) .balanceOf (user) ;
assertGt (userTestPoolBalance, 0);

26

// Create limit order in a same fashion as in _executeLimitOrder
IPoolLogic(testPool) .approve (address(poolLimitOrderManagerProxy) ,
s userTestPoolBalance) ;

poolLimitOrderManagerProxy.createlimitOrder (
PoolLimitOrderManager.LimitOrderInfo ({
amount: userTestPoolBalance,
stopLossPriceD18: O,
takeProfitPriceD18: 1200e18,
user: user,
pool: testPool,
pricingAsset: pricingAsset
b
)3

_setPricingAssetPriceD8(1200e8) ;

// Execute limit order first to create settlement order

PoolLimitOrderManager.LimitOrderExecution[] memory limitOrders =
new PoolLimitOrderManager.LimitOrderExecution[] (1) ;

limitOrders[0] = PoolLimitOrderManager.LimitOrderExecution({
orderId: _getLimitOrderId(user, testPool),
complexAssetsData: _getEmptyPoolComplexAssetsData(testPool),
amount: type(uint256) .max

IR

// attacker's depositFor tx
address attacker = address(0x1337);
deal (usdc, attacker, 1);
vm.startPrank (attacker) ;

IERC20 (usdc) .approve (testPool, 1);

IPoolLogic(testPool) .depositFor (address(PoolLimitOrderManager (poolLimitOrderMan
— agerProxy) .easySwapper()), usdc, 1); // just 1 unit of usdc

skip(6 hours); // to avoid the "can withdraw soon" error

vm.stopPrank() ;

vm. startPrank (keeper) ;

vm.expectRevert ("cooldown active");
poolLimitOrderManagerProxy.executeLimitOrders(limitOrders) ;

27

Output:

[3839] 0xffFb5fB14606EB3a548C113026355020dDF27535: :re |
— ceiverWhitelist (0x00) [staticcall]
[3020] 0x61f9f48Bafe633e2ADfdbB9573419220bDEaEESY: |
— :receiverWhitelist (0x00) [delegatecall]
« [Return] false
« [Return] false
+ [Revert] revert: cooldown active
+« [Revert] revert: cooldown active
+ [Revert] revert: cooldown active
+« [Revert] revert: cooldown active
+« [Revert] revert: cooldown active
+~ [Revert] revert: cooldown active
+« [Revert] revert: cooldown active
+ [Revert] revert: cooldown active

You notice in the logs that the contract checked if the address (0) was whitelisted, and
since it wasn't, it proceeded to this check and reverted with "cooldown active".

Mitigation

This issue can be avoided by checking if _from is a trusted EasySwapperV2, and _to is the
0 address, which means the current tx is a limit order execution tx.

Important Note about the README

The readme note about the depositFor () talks just about the impact in the context of
the PoolLogic contract, i don't think the team are aware of the impact on the PoolLimit0
rderManager contract which can force limit orders to be executed at a loss, therefore i
don't think that rule includes this issue.

The note in the readme was mentioned under Please discuss any design choices you m
ade., and i don't think that allowing an attacker decide when orders are executed is a
design choice.

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/13

28

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L208
https://github.com/dhedge/V2-Public/pull/13

Issue M-5: Incorrect Streaming Fee Calculation

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/128

Found by

000000, 0x37, Bigsam, kelcaM, newspacexyz, silver_eth

Summary

The lastFeeMintTime is not updated when the streamingFee is zero. This creates an issue
when the managementFeeNumerator is zero for a period of time. If the manager later
increases managementFeeNumerator to a positive value, the streaming fee calculation
retroactively includes the period when the fee was supposed to be zero, resulting in users
overpaying fees.

Root Cause

lastFeeMintTime is updated only when streamingFee > 0, ignoring the fact that manageme
ntFeeNumerator could have been zero:

https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/con
tracts/PoolLogic.sol#L814

if (streamingFee > 0) lastFeeMintTime = block.timestamp;

Because of this, past periods with zero management fee are incorrectly counted in
future fee calculations.

Internal pre-conditions

1. Manager sets managementFeeNumerator to zero for a period of time.

2. Laterincreases it to a positive value.

External pre-conditions

Attack Path

29

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/128
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L814
https://github.com/sherlock-audit/2025-07-dhedge-update/blob/main/V2-Public/contracts/PoolLogic.sol#L814

Impact

Streaming fee is incorrectly charged for periods when managementFeeNumerator was zero.
Users overpay fees, benefiting the manager unfairly.

PoC

| will skip two 2 week period before the fees are increased just to show the key of the
issue.

lastFeeMintTime = 1000, managementFeeNumerator = 0, block. timestamp = 2000 - no fee
should accrue, but lastFeeMintTime is not updated.

managementFeeNumerator = 100, block.timestamp = 3000, lastFeeMintTime = 1000 - the
elapsed time of 2000 seconds is incorrectly includes (1000) in streaming fee calculation.

Users pay an inflated streaming fee covering the period when no fee should have been
applied.

Mitigation
Update lastFeeMintTime when managementFeeNumerator is zero:

if (streamingFee > 0 || managementFeeNumerator == 0) lastFeeMintTime =
— block.timestamp;

Discussion

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/V2-Public/pull/8

30

https://github.com/dhedge/V2-Public/pull/8

Issue M-6: PoolLogic::onERC721Received doesnt con-
firm approved msg.sender

Source: https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/135

This issue has been acknowledged by the team but won't be fixed at this time.

Found by

silver_eth

Summary the function onERC721Received doesnt have access control meaning anyone
can call it with a trusted operator to access the specified operator guard for the fiat
money guards for example, the call will process to _verifyERC721

function _verifyERC721(address _operator, address _from, uint256 _tokenId) internal
— returns (bool verified) {
// Leverage NFTs should be minted from Flat Money protocol, not transferred from
— other addresses
require(_from == address(0), "nft not minted");

// Get currently tracked NFTs
uint256 [] memory tokenIds = getOwnedTokenIds(msg.sender);

// Loop through tracked NFTs and check the ownership of each ID. “ownerOf call
— fails if owner is address(0) which means position was burnt.
// Catch block removes this NFT from tracked NFTs. No checks on the owner are
— made because what's in tracker belongs to the vault by default.
for (uint256 i; i < tokenIds.length; ++i) {
try
ILeverageModule (IDelayedOrder (_operator) .vault () .moduleAddress (FlatcoinModul
— eKeys._LEVERAGE_MODULE_KEY))
.owner0f (tokenIds[i])
returns (
address // solhint-disable-next-line no-empty-blocks
) {} catch {
nftTracker.removeUintId ({
_guardedContract: _operator,
_nftType: nftType,
_pool: msg.sender,
_nftID: tokenIdsl[i]
12)5
X
b

// This is the only place where NFT IDs are added to the tracker.
nftTracker.addUintId ({
_guardedContract: _operator,

3l

https://github.com/sherlock-audit/2025-07-dhedge-update-judging/issues/135

_nftType: nftType,
_pool: msg.sender,
_nftID: _tokenId,
_maxPositions: positionsLimit

19K

verified = true;

}

the nftTracker also doesnt ensure that a tokenld is not added twice so an attacker can
either make the call with a nft already owned by the fund or with a nft owned by another
address to make sure that the nft is not removed on the next call and as a result inflate
the positionLimit note: the sponsors mentioned that 721s will not be supported assets but
are still going to be held by the fund

Root Cause no access control on external call
Internal Pre-conditions none
External Pre-conditions none

Attack Path attacker calls onERC721Received with a trusted operator specifying tokens
that have owners (either the fund or another address) until the positionsLimit is reached
operator attempts to send in 721s for protocol operation but the call reverts due to limit
having been reached

Impact dos of operator in sending nft tokens to the pool

S

Disclaimers

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

33

	Introduction
	Scope
	Final Commit Hash
	Findings
	Issues Found
	Issues Not Fixed and Not Acknowledged
	Security experts who found valid issues

	Issue H-1: Tokens can be stolen
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Issue H-2: Lack of validation allowing malicious manager to bypass slippage control to steal funds
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Issue H-3: Manager Can Steal User Funds Using setUserEMode
	Found by
	Summary
	Root Cause
	Internal pre-conditions
	External pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation
	Discussion

	Issue M-1: Malicious actors can DoS assets unrolling
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Issue M-2: Withdrawals can fail due to approval overwrite
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Issue M-3: Limit Order Slippage Validation Vulnerability in EasySwapperV2 Causes Fund Loss For Users
	Found by
	Summary
	Root Cause
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation

	Discussion

	Issue M-4: _beforeTokenTransfer() doesn't handle Burning, which allows DoSing ALL limit orders from being executed and forcing them to be executed at a loss
	Found by
	Summary
	Root Cause
	How can an attacker exploit the cooldown period?
	Internal Pre-conditions
	External Pre-conditions
	Attack Path
	Explaining Why just 1 unit is enough
	Impact
	PoC
	Output:
	Mitigation
	Important Note about the README

	Discussion

	Issue M-5: Incorrect Streaming Fee Calculation
	Found by
	Summary
	Root Cause
	Internal pre-conditions
	External pre-conditions
	Attack Path
	Impact
	PoC
	Mitigation
	Discussion

	Issue M-6: PoolLogic::onERC721Received doesnt confirm approved msg.sender
	Found by

	Disclaimers

