

CREAM
Summary Report
January 28th, 2021

Prepared For:
Leo Cheng | CREAM Finance
leo@machix.com

Jeremy Yang | CREAM Finance
jeremy@cream.finance

Eason Wu | CREAM Finance
eason@cream.finance

Prepared By:
Michael Colburn | Trail of Bits
michael.colburn@trailofbits.com

Maximilian Krüger | Trail of Bits
max.kruger@trailofbits.com

mailto:leo@machix.com
http://jeremy@cream.finance/
http://eason@cream.finance/
mailto:michael.colburn@trailofbits.com
mailto:max.kruger@trailofbits.com

Review Summary

Code Maturity Evaluation

Project Dashboard

Appendix A. Code Maturity Classifications

Appendix B. Token Integration Checklist
General Security Considerations
ERC Conformity
Contract Composition
Owner privileges
Token Scarcity

Appendix C. Handling Key Material

Review Summary
From January 25 to January 27, 2021, Trail of Bits performed an assessment of the CREAM
smart contracts with two engineers, working from commit 2e83fc3 from
CreamFi/compound-protocol as well as commit 8c44071 from the cream-v2 branch of the
same repository. CREAM is a fork of the Compound lending protocol with additional
features. Due to the short length of the engagement, we focused our review on changes
introduced by the fork.

Throughout this assessment, we sought to answer various questions about the security of
CREAM. We focused on flaws that would allow an attacker to:

● Manipulate asset prices returned by the price oracles.
● Subvert the imposed caps on borrowing or supplying.
● Bypass access controls to modify contract state.

This review resulted in three findings ranging from medium to informational in severity.
The medium-severity issue describes how the price oracle acts as a single point of failure
for the system. The remaining informational issues highlight the lack of documentation
accompanying the system as well as the use of ABIEncoderV2 in some of the contracts.
Additionally, we reported several code quality suggestions.

On the following page, we review the maturity of the codebase and the likelihood of future
issues. In each area of control, we rate the maturity from strong to weak, or missing, and
give a brief explanation of our reasoning. Appendix B provides a list of recommendations
to consult when considering adding support for new assets. Appendix C includes guidance
on handling sensitive key material.

Additionally, CREAM Finance should consider these steps to improve their security
maturity:

● Improve the documentation of the system, especially the differences from the
original Compound protocol.

● Integrate fuzzing or symbolic execution to test the correctness of contract
functionality.

● Follow best practices for privileged accounts, e.g., use a multisig wallet for the
owner, and consider the use of an HSM (see our HSM recommendations).

● Follow best practices when using price oracles .
● Conduct further in-depth review focused on the off-chain price oracle infrastructure.

https://github.com/CreamFi/compound-protocol/tree/2e83fc3737bb2a2110a6087fd5a4940c8fc46c0c
https://github.com/CreamFi/compound-protocol
https://github.com/CreamFi/compound-protocol/tree/8c44071fe5b09b09bffb52907ccd5c216d17115e
https://github.com/crytic/echidna/
https://github.com/trailofbits/manticore/
https://blog.trailofbits.com/2018/11/27/10-rules-for-the-secure-use-of-cryptocurrency-hardware-wallets/
https://samczsun.com/so-you-want-to-use-a-price-oracle/

Code Maturity Evaluation

Category Name Description

Access Controls Satisfactory. Adequate access controls were in place for all
privileged operations.

Arithmetic Satisfactory. All relevant arithmetic was checked for errors using
the custom CarefulMath library.

Assembly Use Satisfactory. The usage of assembly was minimal and limited to
areas where it was necessary.

Centralization Weak. An oracle operated by CREAM finance was used as a fallback
for certain assets. Additionally, the Comptroller admin address had
the authority to replace the oracle at any time.

Contract
Upgradeability

Satisfactory. The system used the delegatecall proxy pattern for
upgradeability and no issues were identified.

Function
Composition

Satisfactory. Functions were organized and scoped appropriately.
Code that was added or modified appeared to be consistent with the
existing code style.

Front-Running Satisfactory. We did not identify any issues related to front-running.

Monitoring Satisfactory. All functions that made important state modifications
emitted events.

Specification Missing. Official documentation was very minimal. As the project
was a fork of Compound, much of the relevant documentation
already existed. However, the specific differences from Compound
were not documented clearly.

Testing &
Verification

Satisfactory. The repository included tests for a variety of scenarios.

Appendix A. Code Maturity Classifications

Code Maturity Classes

Category Name Description

Access Controls Related to the authentication and authorization of components.

Arithmetic Related to the proper use of mathematical operations and
semantics.

Assembly Use Related to the use of inline assembly.

Centralization Related to the existence of a single point of failure.

Upgradeability Related to contract upgradeability.

Function
Composition

Related to separation of the logic into functions with clear purpose.

Front-Running Related to resilience against front-running.

Key Management Related to the existence of proper procedures for key generation,
distribution, and access.

Monitoring Related to use of events and monitoring procedures.

Specification Related to the expected codebase documentation.

Testing &
Verification

Related to the use of testing techniques (unit tests, fuzzing, symbolic
execution, etc.).

Rating Criteria

Rating Description

Strong The component was reviewed and no concerns were found.

Satisfactory The component had only minor issues.

Moderate The component had some issues.

Weak The component led to multiple issues; more issues might be present.

Missing The component was missing.

Not Applicable The component is not applicable.

Not Considered The component was not reviewed.

Further
Investigation
Required

The component requires further investigation.

Appendix B. Token Integration Checklist
The following checklist provides recommendations when interacting with arbitrary tokens.
Every unchecked item should be justified and its associated risks understood. An up to
date version of the checklist can be found in crytic/building-secure-contracts .

For convenience, all Slither utilities can be run directly on a token address, such as:

To follow this checklist, you will want to have this output from Slither for the token:

General Security Considerations
❏ The contract has a security review. Avoid interacting with contracts that lack a

security review. Check the length of the assessment (aka “level of effort”), the
reputation of the security firm, and the number and severity of the findings.

❏ You have contacted the developers. You may need to alert their team to an
incident. Look for appropriate contacts on blockchain-security-contacts .

❏ They have a security mailing list for critical announcements. Their team should
advise users (like you!) when critical issues are found or when upgrades occur.

ERC Conformity
Slither includes a utility, slither-check-erc , that reviews the conformance of a token to
many related ERC standards. Use slither-check-erc to review that:

❏ Transfer and transferFrom return a boolean. Several tokens do not return a

boolean on these functions. As a result, their calls in the contract might fail.
❏ The name , decimals , and symbol functions are present if used. These functions

are optional in the ERC20 standard and might not be present.
❏ Decimals returns a uint8 . Several tokens incorrectly return a uint256 . If this is the

slither-check-erc 0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken

- slither-check-erc [target] [contractName] [optional: --erc ERC_NUMBER]
- slither [target] --print human-summary
- slither [target] --print contract-summary
- slither-prop . --contract ContractName # requires configuration, and use of

Echidna and Manticore

https://github.com/crytic/building-secure-contracts/blob/master/development-guidelines/token_integration.md
https://github.com/crytic/slither
https://github.com/crytic/blockchain-security-contacts
https://github.com/crytic/slither/wiki/ERC-Conformance

case, ensure the value returned is below 255.
❏ The token mitigates the known ERC20 race condition . The ERC20 standard has a

known ERC20 race condition that must be mitigated to prevent attackers from
stealing tokens.

❏ The token is not an ERC777 token and has no external function call in transfer
and transferFrom . External calls in the transfer functions can lead to reentrancies.

Slither includes a utility, slither-prop , that generates unit tests and security properties
that can discover many common ERC flaws. Use slither-prop to review that:

❏ The contract passes all unit tests and security properties from slither-prop .

Run the generated unit tests, then check the properties with Echidna and Manticore .

Finally, there are certain characteristics that are difficult to identify automatically. Review
for these conditions by hand:

❏ Transfer and transferFrom should not take a fee. Deflationary tokens can lead to

unexpected behavior.
❏ Potential interest earned from the token is taken into account. Some tokens

distribute interest to token holders. This interest might be trapped in the contract if
not taken into account.

Contract Composition
❏ The contract avoids unneeded complexity. The token should be a simple

contract; a token with complex code requires a higher standard of review. Use
Slither’s human-summary printer to identify complex code.

❏ The contract uses SafeMath . Contracts that do not use SafeMath require a higher
standard of review. Inspect the contract by hand for SafeMath usage.

❏ The contract has only a few non–token-related functions. Non–token-related
functions increase the likelihood of an issue in the contract. Use Slither’s
contract-summary printer to broadly review the code used in the contract.

❏ The token only has one address. Tokens with multiple entry points for balance
updates can break internal bookkeeping based on the address (e.g.
balances[token_address][msg.sender] might not reflect the actual balance).

https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
https://github.com/crytic/slither/wiki/Property-generation
https://github.com/crytic/echidna
https://manticore.readthedocs.io/en/latest/verifier.html
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#contract-summary

Owner privileges
❏ The token is not upgradeable. Upgradeable contracts might change their rules

over time. Use Slither’s human-summary printer to determine if the contract is
upgradeable.

❏ The owner has limited minting capabilities. Malicious or compromised owners
can abuse minting capabilities. Use Slither’s human-summary printer to review
minting capabilities, and consider manually reviewing the code.

❏ The token is not pausable. Malicious or compromised owners can trap contracts
relying on pausable tokens. Identify pauseable code by hand.

❏ The owner cannot blacklist the contract. Malicious or compromised owners can
trap contracts relying on tokens with a blacklist. Identify blacklisting features by
hand.

❏ The team behind the token is known and can be held responsible for abuse.
Contracts with anonymous development teams, or that reside in legal shelters
should require a higher standard of review.

Token Scarcity
Reviews for issues of token scarcity requires manual review. Check for these conditions:

❏ No user owns most of the supply. If a few users own most of the tokens, they can

influence operations based on the token's repartition.
❏ The total supply is sufficient. Tokens with a low total supply can be easily

manipulated.
❏ The tokens are located in more than a few exchanges. If all the tokens are in one

exchange, a compromise of the exchange can compromise the contract relying on
the token.

❏ Users understand the associated risks of large funds or flash loans. Contracts
relying on the token balance must carefully take in consideration attackers with
large funds or attacks through flash loans.

❏ The token does not allow flash minting. Flash minting can lead to substantial
swings in the balance and the total supply, which necessitate strict and
comprehensive overflow checks in the operation of the token.

https://github.com/crytic/slither/wiki/Printer-documentation#human-summary
https://github.com/crytic/slither/wiki/Printer-documentation#human-summary

Appendix C. Handling Key Material
The safety of key material is important in any system, but particularly so in Ethereum; keys
dictate access to money and resources. Theft of keys could mean a complete loss of funds
or trust in the market. The current configuration uses an environment variable in
production to relay key material to applications that use these keys for interacting with
on-chain components. However, attackers with local access to the machine may be able to
extract these environment variables and steal key material, even without privileged
positions. Therefore, we recommend the following:

● Move key material from environment variables to a dedicated secret management

system with trusted computing capabilities. The two best options for this are Google
Cloud Key Management System (GCKMS) or Hashicorp Vault with Hardware Security
Module (HSM) backing.

● Restrict access to GCKMS or Hashicorp Vault to only those applications and
administrators that must have access to the credential store.

● Local key material, such as keys used by fund administrators, may be stored in local
HSMs, such as YubiHSM2 .

● Limit the number of staff members and applications with access to this machine.
● Segment the machine away from all other hosts on the network.
● Ensure strict host logging, patching, and auditing policies are in place for any

machine or application that handles said material.
● Determine the business risk of a lost or stolen key, and what the Disaster Recovery

and Business Continuity (DR/BC) policies are in the event of a stolen or lost key.

https://www.yubico.com/products/yubihsm/

