
Redivis: A Scalable Web Platform for Business Research
Alex Storer∗

astorer@stanford.edu
Stanford University Graduate School of Business

Stanford, California, USA

Ian Mathews∗
Erin DeLaney
ian@redivis.com
erin@redivis.com

Redivis Inc.
Oakland, California, USA

ABSTRACT
Redivis is a web platform specifically tailored to the needs of re-
search computing in the context of large, restricted datasets. At the
Stanford Graduate School of Business, Redivis has been leveraged
to distribute terabyte-scale datasets to the research community. The
platform addresses longstanding challenges in the administration
of large, high-risk datasets, including scalable data ingest and cura-
tion tools, integrated access management, and robust audit trails.
In turn, it also provides an accessible, high-performance compute
environment to end users, allowing them to collaboratively build
reproducible analytical workflows in SQL, R, Python, Stata, and
SAS.

CCS CONCEPTS
• Information systems→Computing platforms; Information
integration.

KEYWORDS
big data, business research, hpc, cloud computing

ACM Reference Format:
Alex Storer, Ian Mathews, and Erin DeLaney. 2024. Redivis: A Scalable
Web Platform for Business Research. In Practice and Experience in Advanced
Research Computing (PEARC ’24), July 21–25, 2024, Providence, RI, USA.ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3626203.3670604

1 INTRODUCTION
For academics working in business research, the growth in size and
complexity of datasets has led to a host of opportunities to perform
groundbreaking studies. Researchers across business disciplines are
using public data, commercially licensable data, and proprietary
datasets to test hypotheses using real-world data that cannot be
collected in a laboratory setting [3]. While this real-world data
provides a remarkable glimpse into behavior, it frequently comes
with additional burdens due to its size and terms of use. Single
datasets can easily extend into the terabyte range, spanning tens

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’24, July 21–25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670604

of billions of records, provided to researchers in thousands of com-
pressed files. Additionally, these datasets are managed by licenses
that can restrict who can use the data, on which systems. Provid-
ing systems that can effectively support the governance of these
datasets while simultaneously allowing for practical solutions for
researchers is a major goal of research computing organizations
supporting business researchers.

2 BACKGROUND
High Performance Computing (HPC) environments at academic
institutions are routinely built to allow researchers to log on to a
Linux-based cluster and submit jobs to run on a large networked col-
lection of compute nodes. For many workloads, these systems work
effectively, providing a mechanism to request specific resources to
process data and perform computations. While these systems aim to
provide a general interface to compute resources, some workloads
are less natural candidates for traditional HPC environments.

Many researchers, particularly in academic business schools, are
trained using tools like R and Stata and rely heavily on graphical
interfaces to data. Once a dataset can no longer be “loaded” into this
software, researchers are faced with a paradigm shift regarding how
to analyze their data. Powerful big data platforms like Spark can
provide one solution, and Spark itself has interfaces to both R and
Python. Unfortunately, distributed systems like Spark require ex-
tensive configuration to launch on multiple nodes in HPC systems.
Even when these platforms are properly configured and launched,
the scale of large datasets can strain HPC systems. Reading from
large distributed datasets in parallel can produce problematic I/O
patterns, particularly on systems with storage arrays that are not
configured to handle high throughput from simultaneous users.
Supporting the use of large datasets can prove challenging for
users, as home directories, temporary directories and local disks
often have size limitations that are orders of magnitude smaller
than the data in question.

At business schools, a further challenge comes from expectations
regarding data governance and compliance with strict terms of use
[4]. For companies that collect and license data for commercial
use, this underlying data is a valuable asset, and protecting this
asset is paramount. Academic licensees need to verify that the
data is stored securely, and that only approved researchers are
able to access data. Unfortunately, on shared clusters, users can
traditionally copy data to other locations, and set permissions on
files that they own. This opens the possibility for nefarious or
inadvertent exposure of this data to other system users, or even
making the data public to external users by using popular tools like
rclone or Globus. Furthermore, auditing tools such as auditd can
report if a file is read by an approved user, but do not make clear

https://orcid.org/0000-0002-7281-0999
https://orcid.org/0000-0002-3436-6639
https://orcid.org/0000-0003-4127-5601
https://doi.org/10.1145/3626203.3670604
https://doi.org/10.1145/3626203.3670604
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626203.3670604&domain=pdf&date_stamp=2024-07-17


PEARC ’24, July 21–25, 2024, Providence, RI, USA Storer, Mathews, and DeLaney

if a written file by that user contains the same data (e.g., it was
copied to an unapproved location). Additionally, audit tools can be
extremely verbose and technical, and the librarians and academic
staff who track data use are not well positioned to use them directly.

From the standpoint of large datasets with monitoring require-
ments, neither researchers nor data administrators are well served
by academic HPC systems. These general-purpose systems enable
a broad range of diverse workflows, but leave gaps for scholars in
business schools engaged with big data. Specifically, a preferred
solution should enable investigators to query large datasets without
complex configuration requirements, provide a clear and simple
audit trail for non-technical data managers, and provide the ability
to restrict sharing and exfiltration of data.

3 SOLUTION AND CAPABILITIES
Over the past five years, Redivis and the Stanford Graduate School
of Business have closely collaborated to develop a platform that
meets these needs in administering research data. Today, data
administrators can ingest large datasets onto the platform, doc-
ument them, assign access controls, and make them available to
researchers. In turn, researchers can explore this data, build analy-
sis pipelines in SQL, and execute code directly on the data to run
models and create visualizations. Taken together, this functionality
supports the entire research data lifecycle, from initial data ingest,
to access control, data analysis, and research output management.

3.1 Application architecture
To support the evolving scale of data and to best align with the
needs of burstable research workloads, as well as to enable us to
focus our efforts on implementing the software requirements, we
opted to leverage the commercial cloud for infrastructure. However,
care was taken to choose technologies that were either a) open-
source; or b) utilized open and standard interface, so as to prevent
provider lock-in.

Google Cloud was chosen as the commercial cloud provider,
with the Redivis application running on containerized services
within a kubernetes cluster. Core components include a Node.js
application layer, PostgreSQL metadata store, Google BigQuery as
a highly-scalable tabular data store, and Google Cloud Storage for
unstructured data. While Google BigQuery and Cloud Storage are
both proprietary products, they use standard interfaces. Data in
BigQuery is queried via ANSI SQL, and Cloud Storage provides a
simple API for reading and writing objects, which could be trivially
substituted for other object storage solutions, such as AWS S3, or a
traditional POSIX filesystem.

3.2 Data ingest and version control
Data ingest is a precursor to any solution for research data man-
agement and analysis. It is also an immensely challenging problem
when working with real world data and its myriad file formats and
inconsistencies, particularly at scale.

Our backend tabular infrastructure, BigQuery, only supports
well-formatted files in comma-delimited, newline-delimited JSON,
Avro, and Parquet formats, with limited and error-prone type infer-
ence. To better meet the realities of the data provided by vendors,
we developed a system of task runners to run data preprocessing

Figure 1: Core services and network diagram for the Redivis
platform

pipelines, which are horizontally scaled within a kubernetes cluster
and communicate via Redis pub/sub messaging. These task runners
perform operations such as inferring schema, converting various
file formats into a type supported by BigQuery, and fixing common
idiosyncrasies found in source data files. This processing is all done
in a streaming manner with minimal memory overhead, allowing
us to easily process and convert individual files up to 5TB in size.

Additionally, many real-world datasets are an ever-evolving
product, and data is often updated after the initial release. With
datasets that are in continuous use, immutability of existing data is
key. To handle this need, we implemented a version control system
that is tuned to large tabular datasets and aims to avoid duplication
and minimize storage costs. Our implementation computes a row-
level difference between versions, only adding or deleting those
records that have changed. All rows for all versions of a table are
stored in a single “base” table, with a partition key that is unique to
the minimum and maximum versions where the row is present. For
a given version of a table, a logical view is defined that only selects
the rows from the relevant partitions. To the end user, it appears
that each version of a table is a distinct entity with the performance
characteristics of a materialized table, but through this system we
are able to substantially reduce storage costs for rapidly-changing
datasets.

3.3 Access management and auditability
To meet the needs of managing access to high-risk datasets, we im-
plemented a tiered, attribute-based access control (ABAC) system
used by administrators to define the rules for accessing specific
datasets. Importantly, different rules can be applied for access to a
dataset’s overview (existence and general documentation), meta-
data (variable names and univariate summary statistics), 1% sample,
and full dataset. These rules can include direct approval from an
administrator for a given access level, as well as the completion of
a collection of requirements, implemented as customizable forms
to be submitted by the researcher and approved by the data admin-
istrator.

Upon approval of access, it is important for many datasets that
researchers be restricted from downloading the data to a personal
computer, as this may violate data usage agreements and generally
presents a major risk for unauthorized distribution. Therefore, the



Redivis for Business Research PEARC ’24, July 21–25, 2024, Providence, RI, USA

access controls in Redivis were designed to allow administrators to
define export restrictions based on the size and target environment.
For example, rules can be configured to only allow export to another
secure compute environment, or following administrator approval
of the particular data derivative, or only for exports up to a certain
size.

Finally, all access-related events are logged to an easily-navigable
and searchable interface. Data administrators can track changes
to users’ access, as well as any data query or export events, with
comprehensive details around the event, such as the acting user,
their IP address, and information about the variables that were
exported or queried.

3.4 Analysis
The analysis functionality on Redivis provides an accessible yet
powerful interface for working with terabyte-scale datasets. Ex-
pressed as a Directed Acyclic Graph (DAG), researchers can join
across any dataset that they have access to as they build data
pipelines and analytical workflows.

When working with these massive datasets, researchers often
only require a subset or aggregate of observations for their final
analysis. The BigQuery query engine is highly optimized for thisma-
nipulation, with the ability to scale to thousands of computational
nodes while performing complex filters, joins, and aggregations.
Through the interface, authorized users can execute SQL queries
to better understand the data and develop their analytical subset.
With many of our users unfamiliar with SQL, we also developed a
no-code graphical interface that can be used to perform most SQL
operations, expressed as a series of consecutively applied “steps”.
Importantly, users can view and download the generated SQL at
any time, ensuring reproducibility and serving as a pedagogical
tool for those who want to learn SQL.

Once researchers have leveraged BigQuery to reduce their data
to an appropriate subset, they require a mechanism to perform
various analytical tasks, such as applying statistical methodologies,
training and evaluating machine-learning models, and creating fi-
nal figures. We chose JupyterLab [2] as the frontend interface for
these analytical notebooks, given its web-native architecture, lan-
guage agnostic design, and broad adoption amongst the academic
community. Researchers can provision these notebooks with a base
image offering R, Python, Stata, or SAS. These images come prein-
stalled with common data science packages, and researchers can
run custom install scripts to further augment their computational
environment. To prevent exfiltration of high-risk data, we auto-
matically apply firewall rules that prevent data egress immediately
after the install scripts are executed, and before any data can be
present on the machine. These machines can be provisioned with
the resources of any available virtual machine on Google Cloud;
at the time of this writing, this includes up to 416 CPUs, 11.50TB
RAM, and 16 NVIDIA Tesla A100 GPUs.

3.5 Reproducibility and research output
management

The combination of data transformations, notebooks, and their
derivatives are collectively referred to as a “project” on Redivis. The
project is designed as a collaborative and reproducible environment.

Figure 2: Screenshot of a Redivis project, with a notebook
node currently active. Projects are represented as a directed
acyclic graph made up of datasets, their tables, and a series
of transforms, notebooks, and their derivatives.

All code is fully version controlled, with the ability to view and
revert to a state at any previous point in time. Additionally, project
owners can easily add their peers and work together in real-time,
though each individual must possess appropriate access to view
data and any derivatives.

The inherent reproducibility of these projects unlocks a signif-
icant opportunity to better manage derivative outputs. In many
shared HPC systems, the size and storage cost of these outputs can
eclipse that of the original source data. However, with full code
history in Redivis, alongside version controlled datasets, we main-
tain the ability to recreate any output by re-executing the upstream
code, and the decision to persist outputs becomes an optimization
problem between ongoing storage costs vs. the computational cost
to re-materialize an output. Based on historic access patterns to a
given table, Redivis continuously evaluates whether the data for a
given table should be deleted, while providing researchers a simple
pathway to “undelete” a historic output if it does become relevant
in the future.

4 UTILIZATION
At the time of this writing, Redivis has been deployed for several
years at Stanford’s Graduate School of Business, and its usage
has been expanding – the bytes processed on the platform has
expanded four-fold in the last year to 4.2PB. Informal feedback
from researchers has been positive, and Stanford Graduate School of
Business administrators are currently supporting multiple requests
to port workflows from on-prem HPC systems to Redivis. This
positive reaction is in line with other Stanford groups using Redivis
as a central platform for hosting sensitive data [1].

5 CONCLUSION
The implementation of Redivis at the Stanford Graduate School of
Business has allowed the school to significantly scale its research
impact. The platform allows for data administrators to more effec-
tively apply their resources, enabling a larger corpus of datasets
and research use cases to be supported by the same team. In turn,



PEARC ’24, July 21–25, 2024, Providence, RI, USA Storer, Mathews, and DeLaney

Table 1: Metrics for the Stanford Graduate School of Business
on Redivis, April 24 2023 – April 24 2024

Data stored 96TB
Bytes processed 4.2PB
Transform queries 18,191
Notebook sessions 2,462
Total CPU time 414M seconds
Active users 151
Active projects 188

the platform increases the accessibility of these data for the school’s
research community, allowing for a broad population of researchers
to engage with the data and develop novel findings. We are excited

to continue to grow the implementation, learn from user feedback,
and apply these results to similar research data settings across the
academy.

REFERENCES
[1] Isabella Chu, Rebecca Miller, Ian Mathews, Ayin Vala, Lesley Sept, Ruth O’Hara,

and David Rehkopf. [n. d.]. FAIR Enough: Building an Academic Data Ecosystem
to Make Real-World Data Available for Translational Research. Journal of Clinical
and Translational Science. ([n. d.]).

[2] Brian E. Granger and Fernando Perez. 2021. Jupyter: Thinking and Storytelling
with Code and Data. Computing in Science and Engineering 23, 2 (2021). https:
//doi.org/10.1109/MCSE.2021.3059263

[3] Alice Kalinowski and Todd Hines. 2020. Eight things to know about business
research data. Journal of Business & Finance Librarianship 25, 3-4 (10 2020), 105–122.
https://doi.org/10.1080/08963568.2020.1847548

[4] Alex Storer and Julie Williamsen. 2021. The Research Hub: Providing Cross-
functional Data Services. In IASSIST. Global Virtual Conference. https://doi.org/
10.5281/zenodo.6754632

https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1109/MCSE.2021.3059263
https://doi.org/10.1080/08963568.2020.1847548
https://doi.org/10.5281/zenodo.6754632
https://doi.org/10.5281/zenodo.6754632

	Abstract
	1 Introduction
	2 Background
	3 Solution and Capabilities
	3.1 Application architecture
	3.2 Data ingest and version control
	3.3 Access management and auditability
	3.4 Analysis
	3.5 Reproducibility and research output management

	4 Utilization
	5 Conclusion
	References

